Spherically symmetric spacetime
- Spherically symmetric spacetime
A spherically symmetric spacetime is one whose isometry group contains a subgroup which is isomorphic to the (rotation) group and the orbits of this group are 2-dimensional spheres (2-spheres). The isometries are then interpreted as rotations and a spherically symmetric spacetime is often described as one whose metric is "invariant under rotations". The spacetime metric induces a metric on each orbit 2-sphere (and this induced metric must be a multiple of the metric of a 2-sphere).
Spherical symmetry is a characteristic feature of many solutions of Einstein's field equations of general relativity, especially the Schwarzschild solution. A spherically symmetric spacetime can be characterised in another way, namely, by using the notion of Killing vector fields, which, in a very precise sense, preserve the metric. The isometries referred to above are actually local flow diffeomorphisms of Killing vector fields and thus generate these vector fields. For a spherically symmetric spacetime , there are precisely 3 rotational Killing vector fields. Stated in another way, the dimension of the Killing algebra is 3 ().
It is known (see Birkhoff's theorem) that any spherically symmetric solution of the vacuum field equations is necessarily isometric to a subset of the maximally extended Schwarzschild solution. This means that the exterior region around a spherically symmetric gravitating object must be static and asymptotically flat.
See also
* Rotation group.
* Spacetime symmetries.
* Deriving the Schwarzschild solution.
References
* "See Section 6.1 for a discussion of spherical symmetry".
Wikimedia Foundation.
2010.
Look at other dictionaries:
Static spherically symmetric perfect fluid — In metric theories of gravitation, particularly general relativity, a static spherically symmetric perfect fluid solution (a term which is often abbreviated as ssspf) is a spacetime equipped with suitable tensor fields which models a static round … Wikipedia
Spacetime — For other uses of this term, see Spacetime (disambiguation). Two dimensional analogy of spacetime distortion. Matter changes the geometry of spacetime, this (curved) geometry being interpreted as gravity. White lines do not represent the… … Wikipedia
Asymptotically flat spacetime — An asymptotically flat spacetime is a Lorentzian manifold in which, roughly speaking, the curvature vanishes at large distances from some region, so that at large distances, the geometry becomes indistinguishable from that of Minkowski… … Wikipedia
Pp-wave spacetime — In general relativity, the pp wave spacetimes, or pp waves for short, are an important family of exact solutions of Einstein s field equation. These solutions model radiation moving at the speed of light. This radiation may consist of:*… … Wikipedia
Schwarzschild coordinates — In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres . In such a spacetime, a particularly important kind of coordinate chart is the Schwarzschild chart, a kind of polar spherical… … Wikipedia
Isotropic coordinates — In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres . There are several different types of coordinate chart which are adapted to this family of nested spheres; the best known is the… … Wikipedia
Deriving the Schwarzschild solution — The Schwarzschild solution is one of the simplest and most useful solutions of the Einstein field equations (see general relativity). It describes spacetime in the vicinity of a non rotating massive spherically symmetric object. It is worthwhile… … Wikipedia
Gaussian polar coordinates — In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres. In each of these spheres, every point can be carried to any other by an appropriate rotation about the center of symmetry.There are… … Wikipedia
List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… … Wikipedia
Petrov classification — In differential geometry and theoretical physics, the Petrov classification describes the possible algebraic symmetries of the Weyl tensor at each event in a Lorentzian manifold.It is most often applied in studying exact solutions of Einstein s… … Wikipedia