Eberlein–Šmulian theorem

Eberlein–Šmulian theorem

In the mathematical field of functional analysis, the Eberlein–Šmulian theorem is a result relating three different kinds of weak compactness in a Banach space. The three kinds of compactness for a subset "A" of a topological space are:
* Compactness (or Lindelöf compactness): Every open cover of "A" admits a finite subcover.
* Sequential compactness: Every sequence from "A" has a convergent subsequence whose limit is in "A".
* Limit point compactness: Every infinite subset of "A" has a limit point in "A".The Eberlein–Šmulian theorem states that the following conditions on a subset "A" of a Banach space "X" are equivalent:
* "A" is weakly compact.
* "A" is weakly sequentially compact.
* "A" is weakly limit point compact.These properties hold for subsets of a metric space; however the weak topology is not metrizable unless the space "X" is finite dimensional. Thus the Eberlein–Šmulian theorem asserts a certain property on the (non-metrizable) weak topology on a Banach which is usually reserved for metric spaces.

References

*.
*.
*.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Banach–Alaoglu theorem — In functional analysis and related branches of mathematics, the Banach–Alaoglu theorem (also known as Alaoglu s theorem) states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology. [Rudin, section …   Wikipedia

  • Espace réflexif —  Ne doit pas être confondu avec Algèbre d opérateurs réflexive (en) En analyse fonctionnelle, un espace de Banach est dit réflexif s il est isomorphe à son bidual topologique. Les espaces réflexifs possèdent d intéressantes propriétés… …   Wikipédia en Français

  • Histoire de l'analyse fonctionnelle — L analyse fonctionnelle est la branche des mathématiques et plus particulièrement de l analyse qui étudie les espaces de fonctions. Sa naissance peut être datée à peu près à 1907, et, un siècle plus tard, elle est omniprésente dans toutes les… …   Wikipédia en Français

  • Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… …   Wikipedia

  • List of mathematics articles (E) — NOTOC E E₇ E (mathematical constant) E function E₈ lattice E₈ manifold E∞ operad E7½ E8 investigation tool Earley parser Early stopping Earnshaw s theorem Earth mover s distance East Journal on Approximations Eastern Arabic numerals Easton s… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”