- Elliptic gamma function
In
mathematics , the elliptic gamma function is a generalization of the q-Gamma function, which is itself theq-analog of the ordinaryGamma function . It is given by:Gamma (z;p,q) = prod_{m=0}^infty prod_{n=0}^inftyfrac{1-p^{m+1}q^{n+1}/z}{1-p^m q^n z}.
It obeys several identities:
:Gamma(z;p,q)=frac{1}{Gamma(pq/z; p,q)},
:Gamma(pz;p,q)= heta (z;q) Gamma (z; p,q),
and
:Gamma(qz;p,q)= heta (z;p) Gamma (z; p,q),,
where θ is the
q-theta function .When p=0, it essentially reduces to the infinite
q-Pochhammer symbol ::Gamma(z;0,q)=frac{1}{(z;q)_infty}.
Wikimedia Foundation. 2010.