Thermodynamic beta

Thermodynamic beta

In statistical mechanics, the thermodynamic beta is a numerical quantity related to the thermodynamic temperature of a system. The thermodynamic beta can be viewed as a connection between the statistical interpretation of a physical system and thermodynamics.

Details

Statistical interpretation

From the statistical point of view, "β" is a numerical quantity relating two macroscopic systems in equilibrium. The exact formulation is as follows. Consider two systems, 1 and 2, in thermal contact, with respective energies "E"1 and "E"2. We assume "E"1 + "E"2 = some constant "E". The number of microstates of each system will be denoted by Ω1 and Ω2. Under our assumptions Ω"i" depends only on "Ei". Thus the number of microstates for the combined system is

:Omega = Omega_1 (E_1) Omega_2 (E_2) = Omega_1 (E_1) Omega_2 (E-E_1) . ,

We will derive "β" from the following fundamental assumption:

:"When the combined system reaches equilibrium, the number Ω is maximized."

(In other words, the system naturally seeks the maximum number of microstates.) Therefore, at equilibrium,

:frac{d}{d E_1} Omega = Omega_2 (E_2) frac{d}{d E_1} Omega_1 (E_1) + Omega_1 (E_1) frac{d}{d E_2} Omega_2 (E_2) cdot frac{d E_2}{d E_1} = 0.

But "E"1 + "E"2 = "E" implies

:frac{d E_2}{d E_1} = -1.

So

:Omega_2 (E_2) frac{d}{d E_1} Omega_1 (E_1) - Omega_1 (E_1) frac{d}{d E_2} Omega_2 (E_2) = 0

i.e.

:frac{d}{d E_1} ln Omega_1 = frac{d}{d E_2} ln Omega_2 quad mbox{at equilibrium.}

The above relation motivates the definition of "β":

:eta equiv frac{d ln Omega}{ d E}.

Connection with thermodynamic view

On the other hand, when two systems are in equilibrium, they have the same thermodynamic temperature "T". Thus intuitively one would expect that "β" be related to "T" in some way. This link is provided by the formula

:S = k ln Omega, ,

where "k" is the Boltzmann constant. So

:d ln Omega = frac{1}{k} d S .

Substituting into the definition of "β" gives

:eta = frac{1}{k} frac{d S}{d E}.

Comparing with the thermodynamic formula

:frac{d S}{d E} = frac{1}{T} ,

we have

:eta = frac{1}{k T} = frac{1}{ au}

where au is sometimes called the "fundamental temperature" of the system with units of energy.

ee also

* Boltzmann distribution
* Canonical ensemble


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Beta — may refer to: *Beta (β), the second letter of the Greek alphabetIn finance: * Beta coefficient in Capital Asset Pricing ModelIn mathematics: * Beta function in mathematics * Beta distribution in statistics * False negative rate in statistics *… …   Wikipedia

  • Beta thermodynamique — Température inverse La température inverse, notée β et parfois dite bêta thermodynamique, est une grandeur physique utilisée en physique statistique. Elle reliée à la température T d un système par β = 1/(kT), où k est la constante de… …   Wikipédia en Français

  • Bêta thermodynamique — Température inverse La température inverse, notée β et parfois dite bêta thermodynamique, est une grandeur physique utilisée en physique statistique. Elle reliée à la température T d un système par β = 1/(kT), où k est la constante de… …   Wikipédia en Français

  • Beta-peptide — β peptides consist of β amino acids, which have their amino group bonded to the β carbon rather than the α carbon as in the 20 standard biological amino acids. The only commonly naturally occurring β amino acid is β alanine; although it is used… …   Wikipedia

  • Beta-Oxypropan — Strukturformel Allgemeines Name 2 Propanol Andere Namen Propan 2 ol (IUPAC) Propanol 2 Isopropanol Isopropylalkohol …   Deutsch Wikipedia

  • Bêta-pinène — β pinène Structure du (+) β pinène Général Nom IUPAC …   Wikipédia en Français

  • béta-propiolactone — β propiolactone Général Nom IUPAC oxétan 2 one Synonymes propiolactone 2 ox …   Wikipédia en Français

  • Fundamental thermodynamic relation — Thermodynamics …   Wikipedia

  • Canonical ensemble — A canonical ensemble in statistical mechanics is a statistical ensemble representing a probability distribution of microscopic states of the system. The probability distribution is characterised by the proportion pi of members of the ensemble… …   Wikipedia

  • Characteristic state function — The characteristic state function in statistical mechanics refers to a particular relationship between the partition function of an ensemble. In particular, if the partition function P satisfies P = exp( − βQ) or P = exp( + βQ) in which Q is a… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”