- Barnes G-function
In
mathematics , the Barnes G-function (typically denoted "G"("z")) is a function that is an extension ofsuperfactorial s to thecomplex number s. It is related to theGamma function , theK-function and theGlaisher-Kinkelin constant , and was named aftermathematician Ernest William Barnes . [ E.W.Barnes, "The theory of the G-function", "Quarterly Journ. Pure and Appl. Math." 31 (1900), 264-314.]Formally, the Barnes G-function is defined (in the form of a
Weierstrass product ) as:G(z+1)=(2pi)^{z/2} e^{- [z(z+1)+gamma z^2] /2}prod_{n=1}^infty left [left(1+frac{z}{n} ight)^ne^{-z+z^2/(2n)} ight]
where γ is the
Euler-Mascheroni constant .Difference equation, functional equation and special values
The Barnes G-function satisfies the
difference equation :G(z+1)=Gamma(z)G(z)
with normalisation G(1)=1. The difference equation implies that G takes the following values at
integer arguments::G(n)=egin{cases} 0&mbox{if }n=0,-1,-2,dots\ prod_{i=0}^{n-2} i!&mbox{if }n=1,2,dotsend{cases}
and thus
:G(n)=frac{(Gamma(n))^{n-1{K(n)}
where Γ denotes the
Gamma function and "K" denotes theK-function . The difference equation uniquely defines the G function if the convexity condition: frac{d^3}{dx^3}G(x)geq 0 is added [M. F. Vignéras, "L'équation fonctionelle de la fonction zêta de Selberg du groupe mudulaire SL2,mathbb{Z})", Astérisque 61, 235-249 (1979).] .The
difference equation for the G function and thefunctional equation for theGamma function yield the followingfunctional equation for the G function, originally proved byHermann Kinkelin ::G(1-z) = G(1+z)frac{ 1}{(2pi)^z} exp int_0^z pi z cot pi z , dz.
Multiplication formula
Like the Gamma function, the G-function also has a multiplication formula [I. Vardi, "Determinants of Laplacians and multiple gamma functions", SIAM J. Math. Anal. 19, 493-507 (1988).] ::G(nz)= K(n) n^{n^{2}z^{2}/2-nz} (2pi)^{-frac{n^2-n}{2}z}prod_{i=0}^{n-1}prod_{j=0}^{n-1}Gleft(z+frac{i+j}{n} ight)where K(n) is a constant given by:
:K(n)= e^{-(n^2-1)zeta^prime(-1)} cdotn^{frac{5}{12cdot(2pi)^{(n-1)/2},=,(Ae^{-frac{1}{12)^{n^2-1}cdot n^{frac{5}{12cdot (2pi)^{(n-1)/2}.
Here zeta^prime is the derivative of the
Riemann zeta function and A is theGlaisher-Kinkelin constant .Asymptotic Expansion
The function log ,G(z+1 ) has the following asymptotic expansion established by Barnes::log G(z+1)=frac{1}{12} - log A + frac{z}{2}log 2pi +left(frac{z^2}{2} -frac{1}{12} ight)log z -frac{3z^2}{4}+sum_{k=1}^{N}frac{B_{2k+2{4kleft(k+1 ight)z^{2k + Oleft(frac{1}{z^{2N+2 ight).
Here the B_{k} are the
Bernoulli numbers and A is theGlaisher-Kinkelin constant . (Note that somewhat confusingly at the time of Barnes [ E.T.Whittaker and G.N.Watson, "A course of modern analysis", CUP.] theBernoulli number B_{2k} would have been written as 1)^{k+1} B_k , but this convention is no longer current.) This expansion is valid for z in any sector not containing the negative real axis with z| large.References
Wikimedia Foundation. 2010.