Aichelburg-Sexl ultraboost

Aichelburg-Sexl ultraboost

In general relativity, the Aichelburg-Sexl ultraboost is an exact solution which models the physical experience of an observer moving past a spherically symmetric gravitating object at nearly the speed of light. It was introduced by Peter C. Aichelburg and Roman U. Sexl in 1971.

The metric tensor can be written, in terms of Brinkmann coordinates, as: ds^2 = -8m , delta(u) , log r , du^2 + 2 , du , dv + dr^2 + r^2 , d heta^2,: -infty < u < infty, , 0 < r < infty, , -infty < v < infty, -pi < heta < pi The ultraboost can be obtained as the limit of various sequences of smooth Lorentzian manifolds.For example, we can take "Poor-man's Gaussian pulses": ds^2 = -frac{4 m a , log(r)}{pi , (1+a^2 u^2)} , du^2- 2 du , dv + dr^2 + r^2 , d heta^2, : -infty < u < infty, , 0 < r < infty, , -infty < v < infty, -pi < heta < pi In these plus-polarized "axisymmetric vacuum pp-waves", the curvature is concentrated along the axis of symmetry, falling off like O(m/r), and also near u=0. As a ightarrow infty, the wave profile turns into a Dirac delta, and we recover the ultraboost. (To avoid possible misunderstanding, we stress that these are exact solutions which approximate the ultraboost, which is also an exact solution, at least if you admit impulsive curvatures.)

This resolves the following paradox: The moving particle will "think" that the stationary object (lets use a planet) has a huge mass, because in the particle's point of view the planet is moving at an ultra relativistic speed. What if the particle moves fast enough so that the planet becomes a black hole, and the particle gets inside the event horizon? Why does it fly right past (like a photon) and not get trapped?

References

* "See Section 7.6.12"
* See also cite web | title=Boosted static multipole particles as sources of impulsive gravitational waves | work=ArXiv | url=http://www.arxiv.org/abs/gr-qc/9809003| accessmonthday=15 June | accessyear=2005
*


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Peter C. Aichelburg — is an Austrian physicist well known for his contributions to general relativity, particularly the Aichelburg Sexl ultraboost of the Schwarzschild vacuum.Aichelburg teaches at the University of Vienna, where he holds an appointment in the… …   Wikipedia

  • Pp-wave spacetime — In general relativity, the pp wave spacetimes, or pp waves for short, are an important family of exact solutions of Einstein s field equation. These solutions model radiation moving at the speed of light. This radiation may consist of:*… …   Wikipedia

  • Histoire de la relativité générale — Les premières idées pour intégrer la gravitation à la relativité datent de 1905, date où la relativité restreinte est née. Henri Poincaré, Albert Einstein et bien d autres ont fait des propositions pour cela. En 1915, Einstein et David Hilbert… …   Wikipédia en Français

  • Golden age of general relativity — The Golden Age of General Relativity is the period roughly from 1960 to 1975 during which the study of general relativity, which had previously been regarded as something of a curiosity, entered the mainstream of theoretical physics. During this… …   Wikipedia

  • Список известных учёных-релятивистов —   Это служебный список статей, созданный для координации работ по развитию темы.   Данное предупреждение не ус …   Википедия

  • Contributors to general relativity — General relativity Introduction Mathematical formulation Resources Fundamental concepts …   Wikipedia

  • Известные учёные-релятивисты —       Служебный список статей, созданный для координации работ по развитию темы.   Данное предупреждение не устанавл …   Википедия

  • Ultrarelativistic limit — In physics, a particle is called ultrarelativistic when its speed is very close to the speed of light c, such that its total energy E^2 = m^2 c^4 + p^2 c^2 is almost completely due to its momentum (p c gg m c^2), and thus can be approximated by E …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”