Wilf–Zeilberger pair

Wilf–Zeilberger pair

In mathematics, specifically combinatorics, a Wilf–Zeilberger pair, or WZ pair, is a pair of functions that can be used to certify certain combinatorial identities. In particular, WZ pairs are instrumental in the evaluation of many sums involving binomial coefficients, factorials, and in general any hypergeometric series. A function's WZ counterpart may be used to find an equivalent, and much simpler sum. Although finding WZ pairs by hand is impractical in most cases, Gosper's algorithm provides a sure method to find a function's WZ counterpart, and can be implemented in a symbolic manipulation program.

See also:
*Herbert S. Wilf
*Doron Zeilberger

Definition

Two functions, F and G, form a pair if and only if the following two conditions hold: F(n+1,k)-F(n,k) = G(n,k+1)-G(n,k) and G(n,pminfty) = 0.Together, these conditions ensure that the sum sum_{k=-infty}^infty [F(n+1,k)-F(n,k)] = 0 because the function G telescopes::egin{align} sum_{k=-infty}^infty [F(n+1,k)-F(n,k)] & {} = lim_{M o infty} sum_{k=-M}^M [F(n+1,k)-F(n,k)] \& {} = lim_{M o infty} sum_{k=-M}^M [G(n,k+1)-G(n,k)] \& {} = lim_{M o infty} G(n,M+1)-G(n,-M) \& {} = 0-0 \& {} = 0.end{align}

Examples

A Wilf–Zeilberger pair can be used to verify the identity sum_{k=-infty}^infty (-1)^k {n choose k} {2k choose k} 4^{n-k} = {2n choose n} using the proof certificate R(n,k)=frac{2k-1}{2n+1}.Define the following functions::egin{align} F(n,k)&=frac{(-1)^k {n choose k} {2k choose k} 4^{n-k2n choose n \G(n,k)&=R(n,k)F(n,k-1)end{align} Now "F" and "G" will form a Wilf-Zeilberger pair:

Further reading

Marko Petkovsek, Herbert Wilf and Doron Zeilberger, "A=B", AK Peters 1996, ISBN 1568810636. Full text online. [http://www.math.upenn.edu/~wilf/AeqB.html]

External links

* [http://www.pnas.org/cgi/reprint/75/1/40.pdf Gosper's algorithm] gives a method for generating WZ pairs when they exist.
* [http://www.math.upenn.edu/~wilf/gfology2.pdf Generatingfunctionology] provides details on the WZ method of identity certification.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Herbert Wilf — Herbert Saul Wilf (* 1931) ist ein US amerikanischer Mathematiker, der sich mit Kombinatorik beschäftigt. Wilf wurde 1958 an der Columbia University bei Herbert Robbins promoviert (Transitions of neutrons in multilayered slab geometry), wie er… …   Deutsch Wikipedia

  • Doron Zeilberger — (hebräisch ‏דורון ציילברגר‎; * 2. Juli 1950 in Haifa, Israel) ist ein israelischer Mathematiker, der sich mit Kombinatorik beschäftigt. Doron Zeilberger Zeilberger wurde 1976 am Weizmann Insti …   Deutsch Wikipedia

  • Doron Zeilberger — Photograph of Doron Zeilberger wearing a T shirt with a Hypergeometric identity at its forefront. Doron Zeilberger (דורון ציילברגר, born July 2, 1950 in Israel) is an Israeli mathematician, known for his work in combinatorics. He is a Board of… …   Wikipedia

  • Gosper's algorithm — In mathematics, Gosper s algorithm is a procedure for finding sums of hypergeometric terms that are themselves hypergeometric terms. That is: suppose we have a(1) + ... + a(n) = S(n) S(0), where S(n) is a hypergeometric term (i.e., S(n+1)/S(n) is …   Wikipedia

  • List of mathematics articles (W) — NOTOC Wad Wadge hierarchy Wagstaff prime Wald test Wald Wolfowitz runs test Wald s equation Waldhausen category Wall Sun Sun prime Wallenius noncentral hypergeometric distribution Wallis product Wallman compactification Wallpaper group Walrasian… …   Wikipedia

  • Theorem — The Pythagorean theorem has at least 370 known proofs[1] In mathematics, a theorem is a statement that has been proven on the basis of previously established statements, such as other theorems, and previously accepted statements …   Wikipedia

  • List of University of Michigan alumni — There are more than 425,000 living alumni of the University of Michigan. Famous alumni include the father of the iPod, the founders of Sun Microsystems and Google, the father of information theory, the voice of Darth Vader, the first doctor… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”