Representation ring

Representation ring

In mathematics, especially in the area of algebra known as representation theory, the representation ring of a group is a ring formed from all the (isomorphism classes of the) linear representations of the group. For a given group, the ring will depend on the base field of the representations. The case of complex coefficients is the most developed, but the case of algebraically closed fields of characteristic "p" where the Sylow "p"-subgroups are cyclic is also theoretically approachable.

Formal definition

Given a group "G" and a field "F", the elements of its representation ring "R""F"("G") are the formal differences of isomorphism classes of finite dimensional linear "F"-representations of "G". For the ring structure, addition is given by the Cartesian product of representations, and multiplication by their tensor product over "F".

Examples

*For the complex representations of the cyclic group of order "n", the representation ring "R""C"("C""n") is isomorphic to Z ["X"] /("X""n" − 1), where "X" corresponds to the complex representation sending a generator of the group to a primitive "n"th root of unity.
*For the rational representations of the cyclic group of order 3, the representation ring "R""Q"(C3) is isomorphic to "Z" ["X"] /("X"2 − "X" − 2), where "X" corresponds to the irreducible rational representation of dimension 2.
*For the the modular representations of the cyclic group of order 3 over a field "F" of characteristic 3, the representation ring "R""F"("C"3) is isomorphic to "Z" ["X","Y"] /("X"2 − "Y" − 1, "XY" − 2"Y","Y"2 − 3"Y").

*The ring "R"(S1) for the circle group is isomorphic to "Z" ["X", "X" −1] . The ring of real representations is the subring of "R"("G") of elements fixed by the involution on "R"("G") given by "X" → "X" −1.

*The ring "R""C"("S"3) for the symmetric group on three points is isomorphic to Z ["X","Y"] /("XY" − "Y"), where "X" is the 1-dimensional alternating representation and "Y" the 2-dimensional irreducible representation of "S"3.

Characters

Any representation defines a character χ:"G" → C. Such a function is constant on conjugacy classes of "G", a so-called class function; denote the ring of class functions by "C(G)". The homomorphism "R(G)" → "C(G)" is injective, so that "R(G)" can be identified with a subring of "C(G)".

For a compact connected group "R(G)" is isomorphic to the subring of "R(T)" (where "T" is a maximal torus) consisting of those class functions that are invariant under the action of the Weyl group (Atiyah amd Hirzebruch, 1961). For the general compact Lie group, see Segal (1968).

References

*Citation |last1=Atiyah |first1= Michael F. |last2=Hirzebruch| first2=Friedrich | title=Vector bundles and homogeneous spaces |year=1961|journal= Proc. Sympos. Pure Math. | volume=III | publisher=American Mathematical Society | pages=7-38 | id=MathSciNet | id=0139181.
*Citation | last1=Bröcker| first1=Theodor| last2=tom Dieck | first2=Tammo| title=Representations of Compact Lie Groups | publisher=Springer-Verlag | location=New York, Berlin, Heidelberg, Tokyo | series=Graduate Texts in Mathematics | isbn= 0-387-13678-9| id=MathSciNet | id = 1410059 | year=1985 | volume=98
*Citation |last=Segal |first= Graeme |title=The representation ring of a compact Lie group |year=1968|journal=Publ. Math. de l'IHES | volume=34 | pages=113-128 | id=MathSciNet | id =0248277 .


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Ring (mathematics) — This article is about algebraic structures. For geometric rings, see Annulus (mathematics). For the set theory concept, see Ring of sets. Polynomials, represented here by curves, form a ring under addition and multiplication. In mathematics, a… …   Wikipedia

  • Ring of the Fisherman, The — • Ring worn by the popes, with a representation of St. Peter in a boat on it Catholic Encyclopedia. Kevin Knight. 2006 …   Catholic encyclopedia

  • Representation theory — This article is about the theory of representations of algebraic structures by linear transformations and matrices. For the more general notion of representations throughout mathematics, see representation (mathematics). Representation theory is… …   Wikipedia

  • Ring-tailed Lemur — Taxobox name = Ring tailed LemurMSW3 Groves|pages=117|id=12100056] status = NT trend = down status system = iucn3.1 status ref = regnum = Animalia phylum = Chordata classis = Mammalia ordo = Primates familia = Lemuridae genus = Lemur genus… …   Wikipedia

  • Représentation des groupes finis — Représentations d un groupe fini En mathématiques, un groupe est une structure algébrique dont la définition est remarquablement simple. Elle consiste en un ensemble muni d une unique opération. Cette opération possède de bonnes propriétés, elle… …   Wikipédia en Français

  • Representation of a Lie group — In mathematics and theoretical physics, the idea of a representation of a Lie group plays an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the… …   Wikipedia

  • Ring laser gyroscope — For a somewhat similar system that uses fibre optic cables, see fibre optic gyroscope. A ring laser gyroscope (RLG) consists of a ring laser having two counter propagating modes over the same path in order to detect rotation. It operates on the… …   Wikipedia

  • RING finger domain — Pfam box Symbol = zf C3HC4 Name = Zinc finger, C3HC4 type (RING finger) width = caption = Pfam= PF00097 InterPro= IPR001841 SMART= PROSITE= PDOC00449 SCOP = 1chc TCDB = OPM family= OPM protein= PDB=PDB3|1jm7A:24 64 PDB3|1rmd :290 328 PDB3|1bor… …   Wikipedia

  • ring of the fisherman — a gold papal seal used on documents and placed on the new pope s finger by the cardinal camerlengo. It has a representation of St. Peter fishing in a boat with the new pope s name around it …   Dictionary of ichthyology

  • Burnside ring — In mathematics, the Burnside ring of a finite group is an algebraic construction that encodes the different ways the group can act on finite sets. The ideas were introduced by William Burnside at the end of the nineteenth Century, but the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”