- Landau–Lifshitz model
In
solid-state physics , the Landau-Lifshitz equation (LLE), named forLev Landau andEvgeny Lifshitz , is a partial differential equations describing time evolution ofmagnetism in solids, depending on 1 time variable and 1, 2, or 3 space variables.Landau-Lifshitz equation
The LLE (a partial differential equation in 1 time and "n" space variables ("n" is usually 1,2,3) describes an anisotropic magnet.The LLE is described in harv|Faddeev|Takhtajan|2007|loc=chapter 8 as follows. It is an equation for a vector field S, in other words a function on R1+"n" taking values in R3. The equation depends on a fixed symmetric 3 by 3 matrix "J", usually assumed to be diagonal; that is, J=operatorname{diag}(J_{1}, J_{2}, J_{3}). It is given by Hamilton's equation of motion for the Hamiltonian
:H=frac{1}{2}int left [sum_ileft(frac{partial mathbf{S{partial x_i} ight)^{2}-J(mathbf{S}) ight] , dxqquad (1)
(where "J"(S) is the quadratic form of "J" applied to the vector S)which is
:frac{partial mathbf{S{partial t} = mathbf{S}wedge sum_ifrac{partial^2 mathbf{S{partial x_i^{2 + mathbf{S}wedge Jmathbf{S}.qquad (2)
In 1+1 dimensions this equation is
:frac{partial mathbf{S{partial t} = mathbf{S}wedge frac{partial^2 mathbf{S{partial x^{2 + mathbf{S}wedge Jmathbf{S}.qquad (3)
In 2+1 dimensions this equation takes the form
:frac{partial mathbf{S{partial t} = mathbf{S}wedge left(frac{partial^2 mathbf{S{partial x^{2 + frac{partial^2 mathbf{S{partial y^{2 ight)+ mathbf{S}wedge Jmathbf{S}qquad (4)
which is the (2+1)-dimensional LLE. For the (3+1)-dimensional case LLE looks like
:frac{partial mathbf{S{partial t} = mathbf{S}wedge left(frac{partial^2 mathbf{S{partial x^{2 + frac{partial^2 mathbf{S{partial y^{2+frac{partial^2 mathbf{S{partial z^{2 ight)+ mathbf{S}wedge Jmathbf{S}.qquad (5)
Integrable reductions
In general case LLE (2) is nonintegrable. But it admits the two integrable reductions:: a) in the 1+1 dimensions that is Eq. (3), it is integrable. The Lax representation for this case reads as:qquad (6a):qquad (6b): b) if J=0 then the (1+1)-dimensional LLE (3) turn to the
continuous classical Heisenberg ferromagnet equation (see e.g.Heisenberg model (classical) ) which is as well known integrable.ee also
*
Nonlinear Schrödinger equation
*Heisenberg model (classical)
*Spin wave
*Micromagnetism
*Ishimori equation
*Magnet
*Ferromagnetism References
*citation|id=MR|2348643|last= Faddeev|first= Ludwig D.|last2= Takhtajan|first2= Leon A.|title= Hamiltonian methods in the theory of solitons|series= Classics in Mathematics|publisher= Springer|place= Berlin|year= 2007|pages= x+592 | ISBN= 978-3-540-69843-2
*citation|ISBN= 978-9812778758
title=Landau-Lifshitz Equations |series=Frontiers of Research With the Chinese Academy of Sciences
first=Boling |last=Guo |first2= Shijin |last2=Ding|year=2008
publisher=World Scientific Publishing Company
* Kosevich A.M., Ivanov B.A., Kovalev A.S. Nonlinear magnetization waves. Dynamical and topological solitons.- Kiev: Naukova Dumka, 1988. - 192 p.
Wikimedia Foundation. 2010.