Chevalley–Shephard–Todd theorem

Chevalley–Shephard–Todd theorem

In mathematics, the Chevalley–Shephard–Todd theorem in invariant theory of finite groups states that the ring of invariants of a finite group acting on a complex vector space is a polynomial ring if and only if the group is generated by pseudoreflections. In the case of subgroups of the complex general linear group the theorem was first proved by G. C. Shephard and J. A. Todd (1954) who gave a case-by-case proof. Claude Chevalley (1955) soon afterwards gave a uniform proof. It has been extended to finite linear groups over an arbitrary field in the non-modular case by Jean-Pierre Serre.

Contents

Statement of the theorem

Let V be a finite-dimensional vector space over a field K and let G be a finite subgroup of the general linear group GL(V). An element s of GL(V) is called a pseudoreflection if it fixes a codimension one subspace of V and is not the identity transformation I, or equivalently, if the kernel Ker (sI) has codimension one in V. Assume that the order of G is relatively prime to the characteristic of K (the so-called non-modular case). Then the following three properties are equivalent:

  • The group G is generated by pseudoreflections.
  • The algebra of invariants K[V]G is a (free) polynomial algebra.
  • The algebra K[V] is a free module over K[V]G.

In the case when the field K is the field C of complex numbers, the first condition is usually stated as "G is a complex reflection group". Shephard and Todd derived a full classification of such groups.

Examples

  • Let V be one-dimensional. Then any finite group faithfully acting on V is a subgroup of the multiplicative group of the field K, and hence a cyclic group. It follows that G consists of roots of unity of order dividing n, where n is its order, so G is generated by pseudoreflections. In this case, K[V] = K[x] is the polynomial ring in one variable and the algebra of invariants of G is the subalgebra generated by xn, hence it is a polynomial algebra.
  • Let V = Kn be the standard n-dimensional vector space and G be the symmetric group Sn acting by permutations of the elements of the standard basis. The symmetric group is generated by transpositions (ij), which act by reflections on V. On the other hand, by the main theorem of symmetric functions, the algebra of invariants is the polynomial algebra generated by the elementary symmetric functions e1, … en.
  • Let V = K2 and G be the cyclic group of order 2 acting by ±I. In this case, G is not generated by pseudoreflections, since the nonidentity element s of G acts without fixed points, so that dim Ker (sI) = 0. On the other hand, the algebra of invariants is the subalgebra of K[V] = K[x, y] generated by the homogeneous elements x2, xy, and y2 of degree 2. This subalgebra is not a polynomial algebra because of the relation x2y2 = (xy)2.

Generalizations

Broer (2007) gave an extension of the Chevalley–Shephard–Todd theorem to positive characteristic.

There has been much work on the question of when a reductive algebraic group acting on a vector space has a polynomial ring of invariants. In the case when the algebraic group is simple and the representation is irreducible all cases when the invariant ring is polynomial have been classified by Schwarz (1978)

In general, the ring of invariants of a finite group acting linearly on a complex vector space is Cohen-Macaulay, so it is a finite rank free module over a polynomial subring.

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Shephard — is a surname and may refer to*Adrian Shephard, a fictional character in the computer game Half Life *Ben Shephard, English television presenter *Ben Shephard (English historian) *Christian Shephard, a fictional character on the television series… …   Wikipedia

  • Chevalley theorem — Several theorems proved by the French mathematician Claude Chevalley bear his name. Chevalley–Shephard–Todd theorem in invariant theory of finite groups. Chevalley–Warning theorem concerning solvability of polynomial equations over finite fields …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Complex reflection group — In mathematics, a complex reflection group is a group acting on a finite dimensional complex vector space, that is generated by complex reflections: non trivial elements that fix a complex hyperplane in space pointwise. (Complex reflections are… …   Wikipedia

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

  • Coxeter group — In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry …   Wikipedia

  • Invariant theory — is a branch of abstract algebra that studies actions of groups on algebraic varieties from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not …   Wikipedia

  • Harish-Chandra homomorphism — In mathematics, the Harish Chandra homomorphismis an isomorphism of commutative rings constructed in the theory of Lie algebras. The isomorphism maps the center Z ( U ( g )) of the universal enveloping algebra U ( g ) of a semisimple Lie algebra… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”