Arakelov theory

Arakelov theory

Arakelov theory (or Arakelov geometry) is an approach to diophantine geometry, named for Suren Arakelov. It is used to study Diophantine equations in higher dimensions.

Background

Arakelov geometry studies a scheme "X" over the ring of integers Z, by putting Hermitian metrics on holomorphic vector bundles over "X"(C), the complex points of "X". This extra Hermitian structure is applied as a substitute, for the failure of the scheme Spec(Z) to be a complete variety.

Results

The theory was introduced for surfaces by harvs|authorlink=Suren Arakelov|last=Arakelov|year1=1974|year2=1975 and was used by Paul Vojta (1991) to give a new proof of the Mordell conjecture, and by harvs|txt=yes|first=Gerd |last=Faltings|authorlink=Gerd Faltings|year=1991 in his proof of Lang's generalization of the Mordell conjecture.

One of the main results of Arakelov theory is the arithmetic Riemann-Roch theorem of harvtxt|Gillet|Soulé|1992, an extension of the Grothendieck-Riemann-Roch theorem to arithmetic schemes. For this one defines arithmetic Chow groups CH"p"("X") of an arithmetic variety "X", and defines Chern classes for Hermitian vector bundles over "X" taking values in the arithmetic Chow groups. The arithmetic Riemann-Roch theorem then describes how the Chern class behaves under pushforward of vector bundles under a proper map of arithmetic varieties.

Arithmetic Chow groups

An arithmetic cycle of codimension "p" is a pair ("Z","g") where "Z"∈"Z""p"("X") is a "p"-cycle on "X" and "g" is a Green current for "Z", a higher dimensional generalization of a Green function. The arithmetic Chow group hat{CH}_p(X) of codimension "p" is the quotient of this group by the subgroup generated by certain "trivial" cycles.

The arithmetic Riemann-Roch theorem

The usual Grothendieck-Riemann-Roch theorem describes how the Chern character ch behaves under pushforward of sheaves, and states that ch("f"*("E")= "f"*(ch(E)Td"X"/"Y"), where "f" is a proper morphism from "X" to "Y" and "E" is a vector bundle over "f". The arithmetic Riemann-Roch theorem is similar except that the Todd class gets multiplied by a certain power series. The arithmetic Riemann-Roch theorem states:hat{ch}(f_*( [E] )=f_*(hat{ch}(E)hat{Td}^R(T_{X/Y}))where
*"X" and "Y" are regular projective arithmetic schemes.
*"f" is a smooth proper map from "X" to "Y"
*"E" is an arithmetic vector bundle over "X".
*hat{ch} is the arithmetic Chern character.
*TX/Y is the relative tangent bundle
*hat{Td} is the arithmetic Todd class
*hat{Td}^R(E) is hat{Td}(E)(1-epsilon(R(E)))
*"R"("X") is the additive characteristic class associated to the formal power series:sum_{m>0, odd}{X^mover m!}(2zeta^prime(-m)+zeta(-m)({1over 1}+{1over 2}+cdots+{1over m})).

References

*citation|first=S.J.|last= Arakelov|title=Intersection theory of divisors on an arithmetic surface|journal= Math. USSR Izv. |volume= 8 |year=1974|pages= 1167–1180 |doi=10.1070/IM1974v008n06ABEH002141
*citation|first=S.J.|last= Arakelov|chapter=Theory of intersections on an arithmetic surface|title= Proc. Internat. Congr. Mathematicians Vancouver |volume= 1 |publisher= Amer. Math. Soc. |year=1975|pages= 405–408
*citation|title=Calculus on Arithmetic Surfaces
first=Gerd|last= Faltings
journal=The Annals of Mathematics > 2nd Ser.|volume= 119|issue= 2 |year= 1984|pages= 387-424
url= http://links.jstor.org/sici?sici=0003-486X%28198403%292%3A119%3A2%3C387%3ACOAS%3E2.0.CO%3B2-X

*citation|title=Diophantine Approximation on Abelian Varieties
first=Gerd |last=Faltings
journal=The Annals of Mathematics > 2nd Ser.|volume= 133|issue= 3 |year= 1991|pages= 549-576
url= http://links.jstor.org/sici?sici=0003-486X%28199105%292%3A133%3A3%3C549%3ADAOAV%3E2.0.CO%3B2-X

*citation|id=MR|1158661
last=Faltings|first= Gerd
title=Lectures on the arithmetic Riemann-Roch theorem.
series= Annals of Mathematics Studies|volume= 127|publisher= Princeton University Press|place= Princeton, NJ |year=1992| ISBN= 0-691-08771-7

*citation|first=H.|last= Gillet|first2= C. |last2=Soulé|title=An arithmetic Riemann–Roch Theorem|journal= Invent. Math. |volume= 110 |year=1992|pages= 473–543|doi=10.1007/BF01231343
*citation|id=MR|2030448
last=Kawaguchi|first= Shu|last2= Moriwaki|first2= Atsushi|last3= Yamaki|first3= Kazuhiko
chapter=Introduction to Arakelov geometry|title= Algebraic geometry in East Asia (Kyoto, 2001)|pages= 1--74, |publisher=World Sci. Publ.|place= River Edge, NJ|year= 2002
DOI=10.1142/9789812705105_0001

*citation|id=MR|0969124
last=Lang|first= Serge
title=Introduction to Arakelov theory|publisher= Springer-Verlag|place= New York|year= 1988| ISBN= 0-387-96793-1

*springer|id=A/a120240|first=Christophe |last=Soulé
*citation|id=MR|1208731
last=Soulé|first= C.
title=Lectures on Arakelov geometry
With the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer
series= Cambridge Studies in Advanced Mathematics|volume= 33|publisher=Cambridge University Press|place= Cambridge|year= 1992|pages= viii+177 | ISBN= 0-521-41669-8

*citation|first=Paul |last=Vojta|title=Siegel's Theorem in the Compact Case
journal=The Annals of Mathematics |volume= 133|issue= 3 |year= 1991|pages= 509-548
url= http://links.jstor.org/sici?sici=0003-486X%28199105%292%3A133%3A3%3C509%3ASTITCC%3E2.0.CO%3B2-Y

External links

* [http://www.institut.math.jussieu.fr/~vmaillot/Arakelov/ Arakelov geometry preprint archive]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Suren Arakelov — Suren Yurievich Arakelov (Russian:Сурен Юрьевич Аракелов) (born October 16, 1947 in Kharkov) is a mathematician, best known for the influential theory that bears his name. Arakelov theory was exploited by Paul Vojta to give a new proof of the… …   Wikipedia

  • Suren Arakelov — Suren Jurjewitsch Arakelow (russisch Сурен Юрьевич Аракелов, wiss. Transliteration Suren Jur evič Arakelov; * 16. Oktober 1947 in Charkiw) ist ein russischer Mathematiker, der sich mit arithmetisch algebraischer Geometrie beschäftigte. Arakelow… …   Deutsch Wikipedia

  • Modulus (algebraic number theory) — In mathematics, in the field of algebraic number theory, a modulus (plural moduli) (or cycle,[1] or extended ideal[2]) is a formal product of places of a global field (i.e. an algebraic number field or a global function field). It is used to… …   Wikipedia

  • Suren Jurjewitsch Arakelow — (russisch Сурен Юрьевич Аракелов, wiss. Transliteration Suren Jur evič Arakelov; * 16. Oktober 1947 in Charkiw) ist ein russischer Mathematiker, der sich mit arithmetisch algebraischer Geometrie beschäftigte. Arakelow studierte ab 1965… …   Deutsch Wikipedia

  • Arakelow — Suren Jurjewitsch Arakelow (russisch Сурен Юрьевич Аракелов, wiss. Transliteration Suren Jur evič Arakelov; * 16. Oktober 1947 in Charkiw) ist ein russischer Mathematiker, der sich mit arithmetisch algebraischer Geometrie beschäftigte. Arakelow… …   Deutsch Wikipedia

  • Glossary of arithmetic and Diophantine geometry — This is a glossary of arithmetic and Diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of… …   Wikipedia

  • Serge Lang — (* 19. Mai 1927 in Saint Germain en Laye bei Paris; † 12. September 2005 in Berkeley, USA) war ein Mathematiker französischer Herkunft, der den größten Teil seines Lebens in den USA lebte. Bekannt wurde er vor allem durch seine Arbeiten zur… …   Deutsch Wikipedia

  • List of mathematics articles (A) — NOTOC A A Beautiful Mind A Beautiful Mind (book) A Beautiful Mind (film) A Brief History of Time (film) A Course of Pure Mathematics A curious identity involving binomial coefficients A derivation of the discrete Fourier transform A equivalence A …   Wikipedia

  • Serge Lang — Infobox Scientist name = Serge Lang box width = 26em image width = 250px caption = Serge Lang (1927 2005) birth date = birth date|1927|5|19 birth place = Paris, France death date = death date and age|2005|9|12|1927|5|19 death place = Berkeley,… …   Wikipedia

  • Мотидзуки, Синъити — В Википедии есть статьи о других людях с такой фамилией, см. Мотидзуки. Cинъити Мотидзуки 望月 新一 Дата рождения: 29 марта 1969(1969 03 29) (43 года) Место рождения: То …   Википедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”