- Arakelov theory
Arakelov theory (or Arakelov geometry) is an approach to
diophantine geometry , named forSuren Arakelov . It is used to studyDiophantine equations in higher dimensions.Background
Arakelov geometry studies a scheme "X" over the ring of integers Z, by putting
Hermitian metric s onholomorphic vector bundle s over "X"(C), the complex points of "X". This extra Hermitian structure is applied as a substitute, for the failure of the scheme Spec(Z) to be acomplete variety .Results
The theory was introduced for surfaces by harvs|authorlink=Suren Arakelov|last=Arakelov|year1=1974|year2=1975 and was used by
Paul Vojta (1991) to give a new proof of theMordell conjecture , and by harvs|txt=yes|first=Gerd |last=Faltings|authorlink=Gerd Faltings|year=1991 in his proof of Lang's generalization of the Mordell conjecture.One of the main results of Arakelov theory is the arithmetic Riemann-Roch theorem of harvtxt|Gillet|Soulé|1992, an extension of the
Grothendieck-Riemann-Roch theorem to arithmetic schemes. For this one defines arithmetic Chow groups CH"p"("X") of an arithmetic variety "X", and definesChern class es for Hermitian vector bundles over "X" taking values in the arithmetic Chow groups. The arithmetic Riemann-Roch theorem then describes how the Chern class behaves under pushforward of vector bundles under a proper map of arithmetic varieties.Arithmetic Chow groups
An arithmetic cycle of codimension "p" is a pair ("Z","g") where "Z"∈"Z""p"("X") is a "p"-cycle on "X" and "g" is a Green current for "Z", a higher dimensional generalization of a
Green function . The arithmetic Chow group of codimension "p" is the quotient of this group by the subgroup generated by certain "trivial" cycles.The arithmetic Riemann-Roch theorem
The usual
Grothendieck-Riemann-Roch theorem describes how theChern character ch behaves under pushforward of sheaves, and states that ch("f"*("E")= "f"*(ch(E)Td"X"/"Y"), where "f" is a proper morphism from "X" to "Y" and "E" is a vector bundle over "f". The arithmetic Riemann-Roch theorem is similar except that the Todd class gets multiplied by a certain power series. The arithmetic Riemann-Roch theorem states:where
*"X" and "Y" are regular projective arithmetic schemes.
*"f" is a smooth proper map from "X" to "Y"
*"E" is an arithmetic vector bundle over "X".
* is the arithmetic Chern character.
*TX/Y is the relative tangent bundle
* is the arithmeticTodd class
* is
*"R"("X") is the additive characteristic class associated to the formal power series:References
*citation|first=S.J.|last= Arakelov|title=Intersection theory of divisors on an arithmetic surface|journal= Math. USSR Izv. |volume= 8 |year=1974|pages= 1167–1180 |doi=10.1070/IM1974v008n06ABEH002141
*citation|first=S.J.|last= Arakelov|chapter=Theory of intersections on an arithmetic surface|title= Proc. Internat. Congr. Mathematicians Vancouver |volume= 1 |publisher= Amer. Math. Soc. |year=1975|pages= 405–408
*citation|title=Calculus on Arithmetic Surfaces
first=Gerd|last= Faltings
journal=The Annals of Mathematics > 2nd Ser.|volume= 119|issue= 2 |year= 1984|pages= 387-424
url= http://links.jstor.org/sici?sici=0003-486X%28198403%292%3A119%3A2%3C387%3ACOAS%3E2.0.CO%3B2-X
*citation|title=Diophantine Approximation on Abelian Varieties
first=Gerd |last=Faltings
journal=The Annals of Mathematics > 2nd Ser.|volume= 133|issue= 3 |year= 1991|pages= 549-576
url= http://links.jstor.org/sici?sici=0003-486X%28199105%292%3A133%3A3%3C549%3ADAOAV%3E2.0.CO%3B2-X
*citation|id=MR|1158661
last=Faltings|first= Gerd
title=Lectures on the arithmetic Riemann-Roch theorem.
series= Annals of Mathematics Studies|volume= 127|publisher= Princeton University Press|place= Princeton, NJ |year=1992| ISBN= 0-691-08771-7
*citation|first=H.|last= Gillet|first2= C. |last2=Soulé|title=An arithmetic Riemann–Roch Theorem|journal= Invent. Math. |volume= 110 |year=1992|pages= 473–543|doi=10.1007/BF01231343
*citation|id=MR|2030448
last=Kawaguchi|first= Shu|last2= Moriwaki|first2= Atsushi|last3= Yamaki|first3= Kazuhiko
chapter=Introduction to Arakelov geometry|title= Algebraic geometry in East Asia (Kyoto, 2001)|pages= 1--74, |publisher=World Sci. Publ.|place= River Edge, NJ|year= 2002
DOI=10.1142/9789812705105_0001
*citation|id=MR|0969124
last=Lang|first= Serge
title=Introduction to Arakelov theory|publisher= Springer-Verlag|place= New York|year= 1988| ISBN= 0-387-96793-1
*springer|id=A/a120240|first=Christophe |last=Soulé
*citation|id=MR|1208731
last=Soulé|first= C.
title=Lectures on Arakelov geometry
With the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer
series= Cambridge Studies in Advanced Mathematics|volume= 33|publisher=Cambridge University Press|place= Cambridge|year= 1992|pages= viii+177 | ISBN= 0-521-41669-8
*citation|first=Paul |last=Vojta|title=Siegel's Theorem in the Compact Case
journal=The Annals of Mathematics |volume= 133|issue= 3 |year= 1991|pages= 509-548
url= http://links.jstor.org/sici?sici=0003-486X%28199105%292%3A133%3A3%3C509%3ASTITCC%3E2.0.CO%3B2-YExternal links
* [http://www.institut.math.jussieu.fr/~vmaillot/Arakelov/ Arakelov geometry preprint archive]
Wikimedia Foundation. 2010.