- Timeline of abelian varieties
This is a timeline of the theory of
abelian varieties inalgebraic geometry , including elliptic curves.Early history
* c. 1000
Al-Karaji writes oncongruent number s [ [http://www.cms.math.ca/Events/summer05/abs/pdf/hm.pdf PDF] ]eventeenth century
* Fermat studies
descent for elliptic curves
*1643 Fermat poses an elliptic curveDiophantine equation [ [http://www.mathpages.com/home/kmath022/kmath022.htm Miscellaneous Diophantine Equations] at MathPages]
*1670 Fermat's son published his "Diophantus" with notesEighteenth century
*
1718 Giulio Carlo Fagnano dei Toschi , rectification of thelemniscate , addition results forelliptic integral s. [ [http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Fagnano_Giulio.html Fagnano_Giulio biography ] ]
*1736 Euler writes on thependulum equation without the small-angle approximation [E. T. Whittaker , "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies" (fourth edition 1937), p. 72.] .
*1738 Euler writes on curves of genus 1 considered by Fermat andFrenicle
*1750 Euler writes on elliptic integrals
* 23 December 1751-27 January 1752: Birth of the theory ofelliptic function s, according to later remarks of Jacobi, as Euler writes on Fagnano's work [André Weil , "Number Theory: An approach through history" (1984), p. 1.] .
*1775 John Landen publishesLanden's transformation [ [http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Landen.html Landen biography ] ] , anisogeny formula.
*1786 Adrien-Marie Legendre begins to write onelliptic integral s
*1797 C. F. Gauss discoversdouble periodicity of thelemniscate function [ [http://www.geocities.com/RainForest/Vines/2977/gauss/appendix/chrono.html Chronology of the Life of Carl F. Gauss ] ]
*1799 Gauss finds the connection of the length of alemniscate and a case of thearithmetic-geometric mean , giving a numerical method for acomplete elliptic integral [Semen GrigorʹevichGindikin, "Tales of Physicists and Mathematicians" (1988 translation), p. 143.] .Nineteenth century
*
1826 N. H. Abel ,Abel's theorem
*1827 inversion of elliptic integral s independently by Abel andC. G. J. Jacobi
*1829 Jacobi, "Fundamenta nova theoriae functionum ellipticarum", introduces fourtheta function s of one variable*
1847 Adolph Göpel gives the equation of theKummer surface [ [http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Gopel.html Gopel biography ] ]
* Rosenhain
* Thomae
*c. 1850Thomas Weddle -Weddle surface
*1856 Weierstrass elliptic function s
*1857 Bernhard Riemann ["Theorie der Abel'schen Funktionen, J. Reine Angew. Math. 54 (1857), 115-180"] lays the foundations for further work on abelian varieties in dimension > 1.
*Riemann bilinear relations
*Riemann theta function
*1866 ,Clebsch andGordan , "Theorie der Abel’schen Functionen"
*1869 Weierstrass proves anabelian function satisfies analgebraic addition theorem
*1879 ,Charles Auguste Briot , "Théorie des fonctions abéliennes"
*1880 In a letter toDedekind ,Leopold Kronecker describes his "Jugendtraum" [ [http://www.sunsite.ubc.ca/DigitalMathArchive/Langlands/pdf/jugend-ps.pdfRobert Langlands , "Some Contemporary Problems with Origins in the Jugendtraum"] ] , to usecomplex multiplication theory to generateabelian extension s ofimaginary quadratic field s
*1884 Sofia Kovalevskaya writes on thereduction of abelian functions to elliptic functions ["Über die Reduction einer bestimmten Klasse Abel'scher Integrale Ranges auf elliptische Integrale," Acta Math. 4, 392–414 (1884).]
*1888 Schottky finds a non-trivial condition on thetheta constant s for curves of genus "g" = 4, launching theSchottky problem
*1895 Wilhelm Wirtinger , "Untersuchungen über Thetafunktionen", studiesPrym varieties
*1897 H. F. Baker , "Abelian Functions: Abel's Theorem and the Allied Theory of Theta Functions"Twentieth century
* c.1910 The theory of
Poincaré normal function s implies that thePicard variety andAlbanese variety areisogenous [ [http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.bams/1183548682 PDF] , p. 168.] .
*1913 Torelli's theorem [Ruggiero Torelli , "Sulle varietà di Jacobi", Rend. della R. Acc. Nazionale dei Lincei , (5), 22, 1913, 98-103.]
*1916 Gaetano Scorza [G. Scorza, Intorno alla teoria generale delle matrici di Riemann e ad alcune sue applicazioni,Rend. del Circolo Mat. di Palermo 41 (1916)] applies the term "abelian variety" tocomplex tori .
*1921 Lefschetz shows that any complex torus with Riemann matrix satisfying the necessary conditions can be embedded in somecomplex projective space using theta-functions
*1922 Louis Mordell provesMordell's theorem : the rational points on an elliptic curve over the rational numbers form afinitely-generated abelian group
*1929 Arthur B. Coble , "Algebraic Geometry and Theta Functions"
*1939 Siegel modular form s [C. L. Siegel , "Einführung in die Theorie der Modulfunktionen n-ten Grades", Math. Ann. 116 (1939), 617–657]
*c. 1940 Weil defines "abelian variety"
*1952 André Weil defines anintermediate Jacobian
*Theorem of the cube
*Selmer group
*Michael Atiyah classifiesholomorphic vector bundle s on an elliptic curve
*1960s David Mumford develops a new theory of theequations defining abelian varieties
*1961 Goro Shimura andYutaka Taniyama , "Complex Multiplication of Abelian Varieties and its Applications to Number Theory"
*Néron model
*Birch-Swinnerton-Dyer conjecture
*Moduli space for abelian varieties
*Duality of abelian varieties
*1968 Serre-Tate theorem on good reduction
*Fontaine and bad reduction
*1983 Shiota provesNovikov's conjecture on the Schottly problem Twenty-first century
*
2001 Proof of themodularity theorem for elliptic curves is completed.Notes
Wikimedia Foundation. 2010.