Hadamard's lemma

Hadamard's lemma

In mathematics, Hadamard's lemma, named after Jacques Hadamard, is essentially a first-order form of Taylor's theorem, in which we can express a smooth, real-valued function exactly in a convenient manner.

tatement

Let "f" be a smooth, real-valued function defined on an open, star-convex neighborhood "U" of a point "a" in "n"-dimensional Euclidean space. Then for "x" in "U", we have

:f(x)=f(a)+sum_{i=1}^n (x_i-a_i) g_i(x),

where each "gi" is a smooth function on "U", "a" = ("a"1,...,"a""n"), and "x" = ("x"1,...,"x""n").

Proof

Let "x" be in "U". Let "h" be a map from [0,1] to the real numbers, defined by

:h(t)=f(a+t(x-a)).,

Then since

:h'(t)=sum_{i=1}^n frac{partial f}{partial x_i}(x+t(x-a)) (x_i-a_i),

we have

:h(1)-h(0)=int_0^1 h'(t),dt=int_0^1 sum_{i=1}^n frac{partial f}{partial x_i}(x+t(x-a)) (x_i-a_i), dt=sum_{i=1}^n (x_i-a_i)int_0^1 frac{partial f}{partial x_i}(a+t(x-a)), dt.

But additionally, "h"(1) − "h"(0) = "f"("x") − "f"("a"), so if we let

:g_i(x)=int_0^1 frac{partial f}{partial x_i}(a+t(x-a)), dt,

we have proven the theorem.

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… …   Wikipedia

  • Coding theory approaches to nucleic acid design — DNA code construction refers to the application of coding theory to the design of nucleic acid systems for the field of DNA–based computation. Contents 1 Introduction 2 Definitions 2.1 Property U 2 …   Wikipedia

  • Лемма Адамара — (англ. Hadamard s lemma, фр. Lemme de Hadamard) утверждение, описывающее строение гладкой вещественной функции. Названа в честь французского математика Жака Адамара. Пусть функция класса , где , определенная в выпуклой окрестности …   Википедия

  • Milnor number — In mathematics, and particularly singularity theory, the Milnor number, named after John Milnor, is an invariant of a function germ. If f is a complex valued holomorphic function germ then the Milnor number of f, denoted μ(f), is either an… …   Wikipedia

  • Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… …   Wikipedia

  • List of combinatorics topics — This is a list of combinatorics topics.A few decades ago it might have been said that combinatorics is little more than a way to classify poorly understood problems, and some standard remedies. Great progress has been made since 1960.This page is …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Scientific phenomena named after people — This is a list of scientific phenomena and concepts named after people (eponymous phenomena). For other lists of eponyms, see eponym. NOTOC A* Abderhalden ninhydrin reaction Emil Abderhalden * Abney effect, Abney s law of additivity William de… …   Wikipedia

  • Liste mathematischer Sätze — Inhaltsverzeichnis A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Satz von Abel Ruffini: eine allgemeine Polynomgleichung vom …   Deutsch Wikipedia

  • Hilbert's theorem (differential geometry) — In differential geometry, Hilbert s theorem (1901) states that there exists no complete regular surface S of constant negative Gaussian curvature K immersed in mathbb{R}^{3}. This theorem answers the question for the negative case of which… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”