Splitting principle

Splitting principle

In mathematics, the splitting principle is a technique used to reduce questions about vector bundles to the case of line bundles.

In the theory of vector bundles, one often wishes to simplify computations, say of Chern classes. Often computations are well understood for line bundles and for direct sums of line bundles. In this case the splitting principle can be quite useful.

Theorem: Splitting Principle: Let \xi\colon E\rightarrow X be a vector bundle of rank n over a manifold X. There exists a space Y = Fl(E), called the flag bundle associated to E, and a map p\colon Y\rightarrow X such that

  1. the induced cohomology homomorphism p^*\colon H^*(X)\rightarrow H^*(Y) is injective, and
  2. the pullback bundle p^*\xi\colon p^*E\rightarrow Y breaks up as a direct sum of line bundles: p^*(E)=L_1\oplus L_2\oplus\cdots\oplus L_n.

The line bundles Li or their first characteristic class are called Chern roots.

The fact that p^*\colon H^*(X)\rightarrow H^*(Y) is injective means that any equation which holds in H * (Y) (say between various Chern classes) also holds in H * (X).

The point is that these equations are easier to understand for direct sums of line bundles than for arbitrary vector bundles, so equations should be understood in Y and then pushed down to X.

Symmetric polynomial

Under the splitting principle, characteristic classes correspond to symmetric polynomials (and for the Euler class, alternating polynomials) in the class of line bundles.

The Chern classes and Pontryagin classes correspond to symmetric polynomials: they are symmetric polynomials in the corresponding classes of line bundles (pk is the kth symmetric polynomial in the p1 of the line bundles, and so forth).

The Euler class is an invariant of an oriented vector bundle, and thus the line bundles are ordered up to sign; the corresponding polynomial is the Vandermonde polynomial, the basic alternating polynomial. Further, for an even dimensional manifold, its square is the top Pontryagin class, which corresponds to the square of the Vandermonde polynomial being the discriminant.

See also

  • K-theory
  • Grothendieck splitting principle for holomorphic vector bundles on the complex projective line

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Müller-Breslau principle — The Müller Breslau principle is a method to determine influence lines. The principle states that the influence lines of an action (force or moment) assumes the scaled formed of the deflection that the structure displays after removing the… …   Wikipedia

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

  • Grothendieck group — In mathematics, the Grothendieck group construction in abstract algebra constructs an abelian group from a commutative monoid in the best possible way. It takes its name from the more general construction in category theory, introduced by… …   Wikipedia

  • Vector bundle — The Möbius strip is a line bundle over the 1 sphere S1. Locally around every point in S1, it looks like U × R, but the total bundle is different from S1 × R (which is a cylinder instead). In mathematics, a vector bundle is a… …   Wikipedia

  • Chern class — In mathematics, in particular in algebraic topology and differential geometry, the Chern classes are characteristic classes associated to complex vector bundles. Chern classes were introduced by Shiing Shen Chern (1946). Contents 1 Basic… …   Wikipedia

  • Line bundle — In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example a curve in the plane having a tangent line at each point determines a varying line: the tangent bundle is a way of organising… …   Wikipedia

  • Characteristic class — In mathematics, a characteristic class is a way of associating to each principal bundle on a topological space X a cohomology class of X. The cohomology class measures the extent to which the bundle is twisted particularly, whether it possesses… …   Wikipedia

  • Adams operation — In mathematics, an Adams operation:ψ k is a cohomology operation in topological K theory, or any allied operation in algebraic K theory or other types of algebraic construction, defined on a pattern introduced by Frank Adams. The basic idea is to …   Wikipedia

  • Classifying space for U(n) — In mathematics, the classifying space for the unitary group U(n) is a space B(U(n)) together with a universal bundle E(U(n)) such that any hermitian bundle on a paracompact space X is the pull back of E by a map X → B unique up to homotopy. This… …   Wikipedia

  • Many-worlds interpretation — The quantum mechanical Schrödinger s cat paradox according to the many worlds interpretation. In this interpretation every event is a branch point; the cat is both alive and dead, even before the box is opened, but the alive and dead cats are in… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”