- Equisatisfiability
In
logic , two formulae are equisatisfiable if the first formula issatisfiable whenever the second is and vice versa; in other words, either both formulae are satisfiable or both are not. Two equisatisfiable formulae may have different models, provided they both have some or both have none. As a result, equisatisfiability is different fromlogical equivalence , as two equivalent formulae always have the same models.Equisatisfiability is generally used in the context of translating formulae, so that one can define a translation to be correct if the original and resulting formulae are equisatisfiable. Examples of translations involving this concept are
Skolemization and some translations intoConjunctive normal form . TheDavis-Putnam algorithm removes, at each step, a variable from a formula, generating a formula that is equisatisfiable with the original one.Examples
A translation from propositional logic into propositional logic in which every binary disjunction is replaced by , where is a new variable (one for each replaced disjunction) is a transformation in which satisfiability is preserved: the original and resulting formulae are equisatisfiable. Note that these two formulae are not equivalent: the first formula has the model in which is true while and are false, and this is not a model of the second formula, in which has to be true in this case.
Wikimedia Foundation. 2010.