Ellrod index

Ellrod index

In meteorology Ellrod index is a technique for forecasting clear-air turbulence. It is calculated based on the product of horizontal deformation and vertical wind shear derived from numerical model forecast winds aloft.The deformation predictors are calculated using following information.
* "Shearing deformation":: DSH=frac{dv}{dx} + frac{du}{dy} .
* "Stretching deformation": : DST = frac{du}{dx} - frac{dv}{dy}. Where "u' and "v" are horizontal components of the wind.
* "Total deformation" equals to:: DEF = sqrt{DSH^2 + DST^2} .
* "Convergence":: CVG = -(frac{du}{dx} + frac{dv}{dy})
* "Vertical wind shear":: VWS = frac{Delta V}{Delta Z} And the resulting index is given by:: EI = VWS imes (DEF + CVG)

To correspond to clear-air turbulence pilot reports the following table can be used:

* [http://aviationweather.gov/exp/ellrod/info.php?mdl=NAM Aviation Weather Center Help ]
* [http://aviationweather.gov/exp/ellrod/nam/ Aviation Weather Center EI display ]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Clear-air turbulence — For other uses, see Clear Air Turbulence (disambiguation). Clear air turbulence (CAT) is the turbulent movement of air masses in the absence of any visual cues such as clouds, and is caused when bodies of air moving at widely different speeds… …   Wikipedia

  • Burghaig — Wappen Deutschlandkarte …   Deutsch Wikipedia

  • Donnersreuth — Wappen Deutschlandkarte …   Deutsch Wikipedia

  • Forstlahm — Wappen Deutschlandkarte …   Deutsch Wikipedia

  • Grafendobrach — Wappen Deutschlandkarte …   Deutsch Wikipedia

  • Gössmannsreuth — Wappen Deutschlandkarte …   Deutsch Wikipedia

  • Herlas — Wappen Deutschlandkarte …   Deutsch Wikipedia

  • Hitzmain — Wappen Deutschlandkarte …   Deutsch Wikipedia

  • Höferänger — Wappen Deutschlandkarte …   Deutsch Wikipedia

  • Katschenreuth — Wappen Deutschlandkarte …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”