Riesz–Fischer theorem

Riesz–Fischer theorem

In mathematics, the Riesz–Fischer theorem in real analysis refers to a number of closely related results concerning the properties of the space L2 of square integrable functions. The theorem was proven independently in 1907 by Frigyes Riesz and Ernst Sigismund Fischer.

The most common form of the theorem states that a function is square integrable if and only if the corresponding Fourier series converges in the space l^2. This means that if the "N"th partial sum of the Fourier series corresponding to a function f is given by

:S_N f(x) = sum_{n=-N}^{N} F_n ,e^{inx},

where F_n, the "n"th Fourier coefficient, is given by

:F_n =frac{1}{2pi}int_{-pi}^pi f(x),e^{-inx},dx,

then

:lim_{n o infty} left Vert S_n f - f ight |_2 = 0,

where left Vert cdot ight |_2 is the L^2-norm.

Conversely, if left { a_n ight } quad is a two-sided sequence of complex numbers (that is, its indices range from negative infinity to positive infinity) such that

:sum_{n=-infty}^infty left | a_n ight vert^2 < infty,

then there exists a function f such that f is square-integrable and the values a_n are the Fourier coefficients of f.

This form of the Riesz–Fischer theorem is a stronger form of Bessel's inequality, and can be used to prove Parseval's identity for Fourier series.

Other results are often called the Riesz-Fisher theorem harv|Dunford|Schwartz|1958|loc=§IV.16. Among them is the theorem that, if "A" is an orthonormal set in a Hilbert space "H", and "x" &isin; "H", then:langle x, y angle = 0for all but countably many "y" &isin; "A", and the series:sum_{yin A} langle x,y angle y
converges normally to "x". Moreover, the following conditions on the set "A" are equivalent:
* the set "A" is an orthonormal basis of "H"
* |x|^2 = sum_{yin A} |langle x,y angle|^2.

Another result, which also sometimes bears the name of Riesz and Fisher, is the theorem that L2 is complete.

Example

The Riesz-Fischer theorem also applies in a more general setting. Let R be an inner product space (in old literature, sometimes called Euclidean Space), and let {phi_n} be an orthonormal system (e.g. Fourier basis, Hermite or Laguerre polynomials, etc. -- see orthogonal polynomials), not necessarily complete (in an inner product space, an orthonormal set is complete if no nonzero vector is orthogonal to every vector in the set). The theorem asserts that if R is complete, then any sequence {c_n} that has finite l^2 norm defines a function f in L^2, e.g. f is square-integrable.

The function f is definedf = lim_{n o infty} sum_{k=0}^n c_k phi_k .

Combined with the Bessel's inequality, we know the converse as well: if f is square-integrable, then the Fourier coefficients (f,phi_n) have finite l^2 norm.

References

*citation|last=Beals|first=Richard|year=2004|title=Analysis: An Introduction|publication-place=New York|publisher=Cambridge University Press|isbn=0-521-60047-2.
*.
*citation|last=Fischer|first=Ernst|authorlink=Ernst Sigismund Fischer|title=Sur la convergence en moyenne|journal=Comptes rendus de l'Académie des sciences|volume=144|pages=1148-1151|year=1907.
*citation|last=Riesz|first=Frigyes|authorlink=Frigyes Riesz|title=Sur les systèmes orthogonaux de fonctions|journal=Comptes rendus de l'Académie des sciences|year=1907|volume=144|pages=615-619.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Théorème de Riesz-Fischer — Pour les articles homonymes, voir Théorème de Riesz. En mathématiques, plus précisément en théorie de l intégration, le théorème de Riesz Fischer dit : qu une fonction est de carré intégrable si et seulement si la série de Fourier… …   Wikipédia en Français

  • Theoreme de Riesz-Fischer — Théorème de Riesz Fischer En mathématiques, le théorème de Riesz Fischer dit qu une fonction est de carré intégrable si et seulement si la série de Fourier correspondante converge dans l espace L2. Cela signifie que si la somme partielle de la… …   Wikipédia en Français

  • Théorème de riesz-fischer — En mathématiques, le théorème de Riesz Fischer dit qu une fonction est de carré intégrable si et seulement si la série de Fourier correspondante converge dans l espace L2. Cela signifie que si la somme partielle de la série de Fourier… …   Wikipédia en Français

  • Riesz theorem — See:* F. and M. Riesz theorem * Riesz representation theorem * M. Riesz extension theorem * Riesz Thorin theorem * Riesz Fischer theoremFrigyes Riesz and Marcel Riesz were two brothers, both of whom were notable mathematicians …   Wikipedia

  • Riesz, Frigyes — ▪ Hungarian mathematician born Jan. 22, 1880, Györ, Austria Hungary [now in Hungary] died Feb. 28, 1956, Budapest, Hungary       Hungarian mathematician and pioneer of functional analysis, which has found important applications to mathematical… …   Universalium

  • Frigyes Riesz — Infobox Scientist name = Frigyes Riesz box width = image width = caption = birth date = 1880 01 22 birth place = Győr, Hungary (Austria Hungary) death date = death date and age|1956|2|28|1880|1|22 death place = Budapest, Hungary residence =… …   Wikipedia

  • Théorème de Fischer-Riesz — Théorème de Riesz Fischer En mathématiques, le théorème de Riesz Fischer dit qu une fonction est de carré intégrable si et seulement si la série de Fourier correspondante converge dans l espace L2. Cela signifie que si la somme partielle de la… …   Wikipédia en Français

  • Ernst Sigismund Fischer — (July 12, 1875 November 14, 1954) was born in Vienna, Austria. He worked alongside both Mertens and Minkowski at the Universities of Vienna and Zurich, respectively. He later became professor at the University of Erlangen, where he worked with… …   Wikipedia

  • Théorème de Riesz — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Plusieurs noms de théorèmes font référence aux deux frères Riesz, mathématiciens hongrois : Frigyes Riesz Théorème de compacité de Riesz, qui dit qu… …   Wikipédia en Français

  • Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”