- Energy recycling
Energy recycling is utilizing energy that would normally be wasted, usually by converting it into
electricity orthermal energy . Energy recycling -- which can be undertaken at manufacturing facilities, power plants, and large institutions such as hospitals and universities -- generally increases efficiency, thereby reducing energy costs and greenhouse gas pollution simultaneously. The process is noted for its potential to mitigate global warming profitably. [web cite|url=http://www.orionmagazine.org/index.php/articles/article/467/|title=The Unsung Solution: What rhymes with waste heat recovery?|work=Orion Magazine, November/December 2007 ]Forms of energy recycling
Waste heat recovery is a process that captures excess heat that would normally be discharged at manufacturing facilities and converts it into electricity and steam. A "waste heat recovery boiler" contains a series of water-filled tubes placed throughout the area where heat is released. When high-temperature heat meets the boiler, steam is produced, which in turn powers a turbine that creates electricity. This process is similar to that of other fired boilers, but in this case, waste heat replaces a traditional flame. No fossil fuels are used in this process. Metals, glass, pulp and paper, silicon and other production plants are typical locations where waste heat recovery can be effective. [web cite|url=http://www.orionmagazine.org/index.php/articles/article/467/|title=The Unsung Solution: What rhymes with waste heat recovery?|work=
Orion Magazine, November/December 2007 ]Combined heat and power (CHP), also calledcogeneration , is, according to theU.S. Environmental Protection Agency , “an efficient, clean, and reliable approach to generating electricity and heat energy from a single fuel source. By installing a CHP system designed to meet the thermal and electrical base loads of a facility, CHP can greatly increase the facility's operational efficiency and decrease energy costs. At the same time, CHP reduces the emission of greenhouse gases, which contribute to global climate change.” When electricity is produced on-site with a CHP plant, excess heat is recycled to produce both processed heat and additional power. [web cite|url=http://www.epa.gov/chp/|title=Combined Heat and Power Partnership|work=U.S. Environmental Protection Agency ] [web cite|url=http://www.uschpa.org/index.html|title=Clean Heat and Power Association|]Current system
Both waste heat recovery and CHP constitute "decentralized" energy production, which is in contrast to traditional "centralized" power generated at large power plants run by regional utilities. [web cite|url=http://www.uschpa.org/index.html|title=Clean Heat and Power Association|] The “centralized” system has an average efficiency of 34 percent, requiring about three units of fuel to produce one unit of power. [web cite|url=http://www.eia.doe.gov/fuelelectric.html|title=The Energy Information Administration|work=
U.S government data ] By capturing both heat and power, CHP and waste heat recovery projects have higher efficiencies.A 2007 Department of Energy study found the potential for 135,000 megawatts of CHP in the U.S., [Bruce Hedman, Energy and Environmental Analysis/USCHPA, "Combined Heat and Power and Heat Recovery as Energy Efficiency Options", Briefing to Senate Renewable Energy Caucus, September 10, 2007, Washington DC.] and a Lawrence Berkley National Laboratory study identified about 64,000 megawatts that could be obtained from industrial waste energy, not counting CHP. [web cite|url=http://www.osti.gov/bridge/servlets/purl/843010-3bxGVs/native/843010.pdf|title=Clean Energy Technologies: a Preliminary Inventory of the Potential for Electricity Generation, Lawrence Berkley National Laboratory, 4/05|] These studies suggest about 200,000 megawatts -- or 20% -- of total power capacity that could come from energy recycling in the U.S. Widespread use of energy recycling could therefore reduce global warming emissions by an estimated 20 percent. [web cite|url=http://www.eia.doe.gov/cneaf/electricity/epa/epat2p2.html|title=The Energy Information Administration, Existing Capacity by Energy Source, 2006|] Indeed, as of 2005, about 42 percent of U.S. greenhouse gas pollution came from the production of electricity and 27 percent from the production of heat. [web cite|url=http://www.epa.gov/climatechange/emissions/usinventoryreport.html|title=Inventory of U.S. Greenhouse Gas Emissions and Sinks|work=
U.S. Environmental Protection Agency, ] [web cite|url=http://www.eia.doe.gov/oiaf/1605/ggrpt/emission.html|title=Emissions of Greenhouse Gases in the United States 2005|work=U.S. Energy Information Administration, ]History
Perhaps the first modern use of energy recycling was done by
Thomas Edison . His 1882 Pearl Street Station, the world’s first commercial power plant, was a CHP plant, producing both electricity and thermal energy while using waste heat to warm neighboring buildings. [web cite|url=http://www.cogeneration.net/ThomasEdisonsCogenPlant.htm|title=World’s First Commercial Power Plant Was a Cogeneration Plant|work=Cogeneration Technologies ] Recycling allowed Edison’s plant to achieve approximately 50 percent efficiency.By the early 1900s, regulations emerged to promote rural electrification through the construction of centralized plants managed by regional utilities. These regulations not only promoted electrification throughout the countryside, but they also discouraged decentralized power generation, such as CHP. They even went so far as to make it illegal for non-utilities to sell power. [web cite|url= http://www.senate.gov/~finance/hearings/testimony/2007test/052407testsc.pdf
title=Testimony of Sean Casten before Senate subcommittee on Energy, Natural Resources, and Infrastructure, 5/27/07|]By 1978, Congress recognized that efficiency at central power plants had stagnated and sought to encourage improved efficiency with the
Public Utility Regulatory Policies Act (PURPA), which encouraged utilities to buy power from other energy producers. CHP plants proliferated, soon producing about 8 percent of all energy in the U.S. [web cite|url= http://www.localpower.org|title=World Survey of Decentralized Energy, 5/06|] However, the bill left implementation and enforcement up to individual states, resulting in little or nothing being done in many parts of the country.Outside the U.S., energy recycling is more common. Denmark is probably the most active energy recycler, obtaining about 55% of its energy from CHP and waste heat recovery. Other large countries, including Germany, Russia, and India, also obtain a much higher share of their energy from decentralized sources. [http://www.npr.org/templates/story/story.php?storyId=90714692 'Recycling' Energy Seen Saving Companies Money] . By David Schaper. May 22, 2008.
Morning Edition .National Public Radio .] [web cite|url= http://www.localpower.org|title=World Survey of Decentralized Energy, 5/06|]References
Wikimedia Foundation. 2010.