Laplace-Beltrami operator

Laplace-Beltrami operator

In differential geometry, the Laplace operator can be generalized to operate on functions defined on surfaces, or more generally on Riemannian and pseudo-Riemannian manifolds. This more general operator goes by the name Laplace-Beltrami operator. As the Laplacian, the Laplace-Beltrami operator is defined as the divergence of the gradient. The operator can be extended to operate on tensors as the divergence of the covariant derivative. Alternatively, the operator can be generalized to operate on differential forms using the divergence and exterior derivative. The resulting operator is called the Laplace-de Rham operator.

Laplace-Beltrami operator

One defines the Laplace-Beltrami operator, just as the Laplacian, as the divergence of the gradient. To be able to find a formula for this operator, one will need to first write the divergence and the gradient on a manifold.

If g denotes the (pseudo)-metric tensor on the manifold, one finds that the volume form in local coordinates is given by

:mathrm{vol}_n := sqrt X^i ight).

Here (and below) we use the Einstein notation, so the above is actually a sum in "i". The gradient of a scalar function "f" may be defined through the inner product langlecdot,cdot angle on the manifold, as

:langle mbox{grad} f(x) , v_x angle = df(x)(v_x)

for all vectors v_x anchored at point "x" in the tangent bundle T_xM of the manifold at point "x". Here, "df" is the exterior derivative of the function "f"; it is a 1-form taking argument v_x. In local coordinates, one has

: left(mbox{grad} f ight)^i = partial^i f = g^{ij} partial_j f.

Combining these, the formula for the Laplace-Beltrami operator applied to a scalar function "f" is, in local coordinates

:Delta f = mbox{div grad} ; f = frac{1}{sqrt .

When |g| = 1, such as in the case of Euclidean space with Cartesian coordinates, one then easily obtains

:Delta f = partial_i partial^i f

which is the ordinary Laplacian. Using the Minkowski metric with signature (+++-), one regains the D'Alembertian given previously. Under local parametrization u^1, u^2, the Laplace-Beltrami operator can be expanded in terms of the metric tensor and Christoffel symbols as follows:

:Delta f = g^{ij}left(frac{partial^2 f}{partial u^i, partial u^j} - Gamma_{ij}^k frac{partial f}{partial u^k} ight).

Note that by using the metric tensor for spherical and cylindrical coordinates, one can similarly regain the expressions for the Laplacian in spherical and cylindrical coordinates. The Laplace-Beltrami operator is handy not just in curved space, but also in ordinary flat space endowed with a non-linear coordinate system.

Note also that the exterior derivative "d" and -div are adjoint:

:int_M df(X) ;mathrm{vol}_n = - int_M f mbox{div} X ;mathrm{vol}_n (proof)

where the last equality is an application of Stokes' theorem. Note also, the Laplace-Beltrami operator is negative and symmetric:

:int_M fDelta h ;mathrm{vol}_n = -int_M langle mbox{grad} f, mbox{grad} h angle ;mathrm{vol}_n = int_M hDelta f ;mathrm{vol}_n

for functions "f" and "h" . For this reason, several authors prefer to define the Laplace-Beltrami operator as the present one with a minus sign in front, so that it is positive .

Using the covariant derivative

The Laplace-Beltrami operator can be written using the trace of the iterated covariant derivative associated to the Levi-Civita connection. From this perspective, let "X"i be a basis of tangent vector fields (not necessarily induced by a coordinate system). Then the Hessian of a function "f" is the symmetric 2-tensor whose components are given by

:H(f)_{ij}=H_f(X_i, X_j) = abla_{X_i} abla_{X_j} f - abla_{ abla_{X_i}X_j} f

This is easily seen to transform tensorially, since it is linear in each of the arguments "X"i, "X"j. The Laplace-Beltrami operator is then the trace of the Hessian with respect to the metric:

:Delta f = sum_{ij} g^{ij} H(f)_{ij}.

In abstract indices, the operator is often written

:Delta f = abla^a abla_a f

provided it is understood implicitly that this trace is in fact the trace of the Hessian "tensor".

Laplace-de Rham operator

More generally, one can define a Laplacian differential operator on the exterior algebra of a differentiable manifold. On a Riemannian manifold it is an elliptic operator, while on a Lorentzian manifold it is hyperbolic. The Laplace-de Rham operator is defined by

:Delta= mathrm{d}delta+deltamathrm{d} = (mathrm{d}+delta)^2,;

where d is the exterior derivative or differential and δ is the codifferential. When acting on scalar functions, the codifferential may be defined as δ = −*d*, where *; is the Hodge star; more generally, the codifferential may include a sign that depends on the order of the "k"-form being acted on.

One may prove that the Laplace-de Rham operator is equivalent to the previous definition of the Laplace-Beltrami operator when acting on a scalar function "f"; see the proof for details. Notice that the Laplace-de Rham operator is actually minus the Laplace-Beltrami operator; this minus sign follows from the conventional definition of the properties of the codifferential. Unfortunately, Δ is used to denote both; which can sometimes be a source of confusion.

Properties

Given scalar functions "f" and "h", and a real number "a", the Laplace-de Rham operator has the following properties:
#Delta(af + h) = a,Delta f + Delta h!
#Delta(fh) = f ,Delta h + 2 (partial_i f) (partial^i h) + h, Delta f (proof)

Laplace operators on tensors

The Laplace-Beltrami operator can be extended to an operator on arbitrary tensors on a pseudo-Riemannian manifold using the covariant derivative associated to the Levi-Civita connection. This extended operator may then act on skew-symmetric tensors. However, the resulting operator is not the same one as that given by the Laplace-de Rham operator: the two are related by the Weitzenböck identity.

See also

* Laplacian operators in differential geometry

References

*
* Jürgen Jost, "Riemannian Geometry and Geometric Analysis", (2002) Springer-Verlag, Berlin ISBN 3-540-42627-2 . "(Provides a general introduction to curved surfaces)."


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Laplace-Beltrami-Operator — Der Laplace Operator Δ ist ein mathematischer Operator (also eine Rechenvorschrift), der zuerst von Pierre Simon Laplace eingeführt wurde. Er spielt in vielen physikalischen Theorien, insbesondere bei der Beschreibung elektrischer und… …   Deutsch Wikipedia

  • Laplace-Beltrami operator/Proofs — div is adjoint to dThe claim is made that −div is adjoint to d ::int M df(X) ;omega = int M f , operatorname{div} X ;omega Proof of the above statement::int M (fmathrm{div}(X) + X(f)) omega = int M (fmathcal{L} X + mathcal{L} X(f)) omega :: = int …   Wikipedia

  • Laplace operator — This article is about the mathematical operator. For the Laplace probability distribution, see Laplace distribution. For graph theoretical notion, see Laplacian matrix. Del Squared redirects here. For other uses, see Del Squared (disambiguation) …   Wikipedia

  • Laplace-Operator — Der Laplace Operator Δ ist ein mathematischer Operator, der zuerst von Pierre Simon Laplace eingeführt wurde. Es handelt sich um einen linearen Differentialoperator innerhalb der mehrdimensionalen Analysis. Der Laplace Operator spielt in vielen… …   Deutsch Wikipedia

  • Delta-Operator — Der Laplace Operator Δ ist ein mathematischer Operator (also eine Rechenvorschrift), der zuerst von Pierre Simon Laplace eingeführt wurde. Er spielt in vielen physikalischen Theorien, insbesondere bei der Beschreibung elektrischer und… …   Deutsch Wikipedia

  • Laplacescher Operator — Der Laplace Operator Δ ist ein mathematischer Operator (also eine Rechenvorschrift), der zuerst von Pierre Simon Laplace eingeführt wurde. Er spielt in vielen physikalischen Theorien, insbesondere bei der Beschreibung elektrischer und… …   Deutsch Wikipedia

  • Verallgemeinerter Laplace-Operator — Verallgemeinerte Laplace Operatoren sind mathematische Objekte, welche in der Differentialgeometrie insbesondere in der Globalen Analysis untersucht werden. Wie der Name schon sagt, sind die hier behandelten Operatoren Verallgemeinerungen des aus …   Deutsch Wikipedia

  • Dolbeault-Operator — Die äußere Ableitung oder Cartan Ableitung ist eine Funktion aus den Bereichen Differentialgeometrie und Analysis. Die äußere Ableitung verallgemeinert das aus der Analysis bekannte Leibniz sche Differential auf den Raum der Differentialformen.… …   Deutsch Wikipedia

  • Eugenio Beltrami — Infobox Scientist name = Eugenio Beltrami image width = 170px caption = Eugenio Beltrami birth date = birth date|1835|11|16|df=y birth place = Cremona, Lombardy, Austrian Empire death date = death date and age|1899|6|4|1835|11|16|df=y death place …   Wikipedia

  • Deltaoperator — Der Laplace Operator Δ ist ein mathematischer Operator (also eine Rechenvorschrift), der zuerst von Pierre Simon Laplace eingeführt wurde. Er spielt in vielen physikalischen Theorien, insbesondere bei der Beschreibung elektrischer und… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”