Logmoment generating function

Logmoment generating function

In mathematics, the logarithmic momentum generating function (equivalent to cumulant generating function) ("logmoment gen func") is defined as follows:

:mu_{Y}(s)=ln E(e^{scdot Y})

where "Y" is a random variable.

Thus, if "Y" is a discrete random variable, then

:mu_{Y}(s):=ln sum_y P(y)cdot e^{scdot y} ,

especially for the binary case (Bernoulli distribution)

:mu_Y(s)=lnleft{pcdot e^s + (1-p) ight}

and if "Y" is a random variable with continuous distribution, then

:mu_{Y}(s):=ln int_y Phi(y)cdot e^{scdot y}.

Here Φ is the cumulative distribution function of "Y".

it is also true that for a sum of independent random variables

: Y=sum_{j=1}^J X_j

that

:mu_Y(s)=sum_{j=1}^J mu_{X_j}(s)

Proof:

:mu_Y(s)=ln left(e^{scdot Y} ight) = ln Eleft(e^{scdot sum_{j=1}^J X_j} ight)stackrel{*}{=} lnprod_{j=1}^{J} Eleft(e^{scdot X_j} ight) =sum_{j=1}^J ln Eleft(e^{scdot X_j} ight) = sum_{j=1}^J mu_{X_j}(s).

("*" is where we used the independence of the X_j random variables)

ee also

*Cumulant generating function
*Moment generating function


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”