- Roman technology
Roman technology is the engineering practice which supported Roman civilization and made the expansion of
Roman commerce and Roman military possible over nearly a thousand years.The
Roman Empire had the most advanced set of technology of their time, some of which may have been lost during the turbulent eras ofLate Antiquity and theEarly Middle Ages . Gradually, some of the technological feats of the Romans were rediscovered and/or improved upon and some others – such as firearms, advanced sailing ship technologies and moveable type printing – went ahead of what the Romans had done by the end of theMiddle Ages and the beginning of theModern Era . Nevertheless, the Roman technological feats of many different areas, like civil engineering, construction materials, transport technology, and some inventions such as the mechanical reaper went unmatched until the 19th century.Process of acquiring new technology
Foreign influence
Much of what is described as typically Roman technology, as opposed to that of the Greeks, comes directly from the
Etruscan civilization , which was thriving to the North whenRome was just a small kingdom. The Etruscans had perfected the stonearch , and used it in bridges as well as buildings. Etruscan cities had paved streets and sewer systems, unlike most city-states, which had muddy roads and no sewers save filthy open-air trenches.Some of later Roman technology was taken directly from Greek civilization. Many of the implements of land based Roman armies came out of the experimentation and the new developments in weapons of the Hellenistic wars that raged for decades between the successors of
Alexander the Great . Torsion artillery made the individual Greek city states newly vulnerable. Nor could city state militias compete against the coordinated arms of the new professional armies. The future lay with regional powers. By founding colonies of citizens and alliances with many small city states, Rome became a major multiple city regional power despite having the formal constitution of an individual city state. Rome's success would owe something to being on the periphery of a number of cultures, Etruscan, Greek and perhaps Samnite and Carthaginian.Roman fleets were based directly on Carthaginian
quinqueremes but were quickly adapted with the Roman innovation of the corvus (Polybius 1,21-23).peed of innovation
Small scale innovation was common as devices were gradually made more efficient, such as the improvement of the
overshot water wheel and the improvements in wagon construction. Technology could and did evolve. The scale of the Empire encouraged the geographical spread of innovations. The ideal Roman citizen was an articulate veteran soldier who could wisely govern a large family household, which was supported by slave labor. Innovators did have some prestige;Pliny , for example, often records their names, or has some story to account for the innovation. Romans also knew enough history to be aware that technological change had occurred in the past and brought benefits. Military innovation was always valued. One text,De Rebus Bellicis , devoted to a number of innovations in military machinery, has survived.The apparent period in which technological progress was fastest and greatest was during the 2nd century and 1st century BC, which was the period in which Roman political and economic power greatly increased. Innovation continued until the fall of the Empire, and it would take hundreds of years for all of its technological advancements to be rediscovered by other civilizations. Our understanding of Roman technology is provided by Pliny's
Naturalis Historia , theDe Architectura ofVitruvius and theDe aquaeductu ofFrontinus , all reliable works which give good information, and many inventions they mention have been confirmed by modernarchaeology . By the beginning of the 1st century, most of what is considered today as typical Roman technology was already invented and refined, such as:concrete ,plumbing facilities, cranes, wagon technology, mechanizedharvesting machines,domes , thearch in building practice,wine andoil presses, andglass blowing .The energy constraint
All technology uses energy to transform a material into a desirable object. The cheaper energy is, the wider the class of technologies that are considered economic. This is why technological history can be seen as a succession of ages defined by energy type i.e. human, animal, water, peat, coal, and oil. The Romans had water power, and exploited wood and coal for heating. There were huge reserves of wood, peat and coal in the Roman Empire, but they were all in the wrong place. Wood could be floated down rivers to the major urban centres but otherwise it was a very poor fuel, being heavy for its calorific value. If this was improved by being processed into charcoal, it was bulky. Nor was wood ever available in any concentration. Room heating was normally better done by charcoal braziers than hypocausts. But
hypocaust s did allow them to exploit any poor quality smokey fuels like straw, vine prunings and small wood locally available. Hypocausts also allowed them to generate a humid heat for their baths. The Romans worked almost all the coalfields of England that outcropped on the surface, by the end of the 2nd century (Smith 1997; 323). But there is no evidence that this exploitation was on any scale. After c.200 AD the commercial heart of the Empire was in Africa and the East where the climate severely limited timber growth. There was no large coalfield on the edge of the Mediterranean. If there had been, history may have been different.Craft basis
Roman technology was largely based on a system of crafts, although the term
engineering is used today to describe the technical feats of the Romans. The Greek words used were mechanic or machine-maker or even mathematician which had a much wider meaning than now. There were a large number of engineers employed by the army. The most famous engineer of this period wasApollodorus of Damascus . Normally each trade, each group ofartisan s—stone masons,glass blowers, surveyors, etc.—within a project had its own practice of masters and apprentices, and many tried to keep their trade secrets, passing them on solely by word of mouth, a system still in use today by those who do not want topatent their inventions. Writers such asVitruvius ,Pliny the Elder andFrontinus published widely on many different technologies, and there was a corpus of manuals on basic mathematics and science such as the many books byArchimedes ,Ctesibius ,Heron ,Euclid and so on. Not all of the manuals which were available to the Romans have survived, aslost works illustrates.Much of what is known of Roman technology comes indirectly from archaeology and from the third-hand accounts of
Latin texts copied from Arabic texts, which were in turn copied from the Greek texts of scholars such asHero of Alexandria or contemporary travelers who had observed Roman technologies in action. Writers likePliny the Elder andStrabo had enough intellectual curiosity to make note of the inventions they saw during their travels, although their typically brief descriptions often arouse discussion as to their precise meaning. On the other hand, Pliny is perfectly clear when describinggold mining , his text in book xxxiii having been confirmed byarchaeology and field-work at such sites asLas Medulas andDolaucothi .Engineering and construction
The Romans made great use of
aqueduct s,dams ,bridge s, andamphitheater s. They were also responsible for many innovations to roads, sanitation, and construction in general. Roman architecture in general was greatly influenced by theEtruscans . Most of the columns and arches seen in famous Roman architecture were adopted from the Etruscan civilization.In the Roman Empire, cements made from pozzolanic ash/pozzolana and an aggregate made from pumice were used to make a
concrete very similar to modern Portland cement concrete. In 20s BC the architectVitruvius described a low-water-content method for mixing concrete. The Romans found out thatinsulated glazing (or "double glazing") improved greatly on keeping buildings warm, and this technique was used in the construction of public baths.Another truly original process which was born in the empire was the practice of
glassblowing , which started in Syria and spread in about one generation in the empire.Machines
There were many types of presses to press olives, In the 1st century, Pliny the Elder reported the invention and subsequent general use of the new and more compact screw presses. However, the screw press was almost certainly not a Roman invention. It was first described by
Hero of Alexandria , but may have already been in use when he mentioned it in his Mechanica III.Cranes were used for construction work and possibly to load and unload ships at their ports, although for the latter use there is according to the “present state of knowledge” still no evidence. [Michael Matheus: "Mittelalterliche Hafenkräne," in: Uta Lindgren (ed.): Europäische Technik im Mittelalter. 800-1400, Berlin 2001 (4th ed.), pp. 345-48 (345)] Most cranes were capable of lifting about 6-7 tons of cargo, and according to a relief shown on
Trajan's column were worked bytreadwheel .Roads
The Romans primarily built roads for their military. Their economic importance was probably also significant, although wagon traffic was often banned from the roads to preserve their military value. At its largest extent the total length of the Roman road network was 85 000 km (53 000 miles).
Way stations providing refreshments were maintained by the government at regular intervals along the roads. A separate system of changing stations for official and private couriers was also maintained. This allowed a dispatch to travel a maximum of 800 km (500 miles) in 24 hours by using a relay of horses.
The roads were constructed by digging a pit along the length of the intended course, often to
bedrock . The pit was first filled with rocks, gravel or sand and then a layer of concrete. Finally they were paved with polygonal rock slabs. Roman roads are considered the most advanced roads built until the early 19th century. Bridges were constructed over waterways. The roads were resistant to floods and other environmental hazards. After the fall of the Roman empire the roads were still usable and used for more than 1000 years.Aqueducts
The Romans constructed numerous aqueducts to supply water. The city of
Rome itself was supplied by eleven aqueducts that provided the city with over 1 million cubic meters of water each day, sufficient for 3.5 million people even in modern day times,ref|GRST-engineering and with a combined length of 350 km (260 miles).ref|frontinusMost aqueducts were constructed below the surface with only small portions above ground supported by arches. The longest Roman aqueduct, 178km (94 miles) in length, was built to supply the city ofCarthage .ref|waterhistoryRoman aqueducts were built to remarkably fine tolerances, and to a technological standard that was not to be equaled until modern times. Powered entirely by
gravity , they transported very large amounts of water very efficiently. Sometimes, where depressions deeper than 50 m had to be crossed,inverted siphon s were used to force water uphill.ref_label|waterhistory|2|a An aqueduct also supplied water for the overshot wheels at Barbegal inRoman Gaul , a complex of water mills hailed as "the greatest known concentration of mechanical power in the ancient world". [Kevin Greene, “Technological Innovation and Economic Progress in the Ancient World: M.I. Finley Re-Considered”, "The Economic History Review", New Series, Vol. 53, No. 1. (Feb., 2000), pp. 29-59 (39)]Bridges
Roman bridges were the among first large and lasting bridges built.They were built with stone and had the
arch as its basic structure. Most utilized concrete as well.Built in 142 BC, thePons Aemilius , later named "Ponte Rotto" (broken bridge) is the oldest Roman stone bridge in Rome, Italy.The biggest Roman bridge wasTrajan's bridge over the lower Danube, constructed byApollodorus of Damascus , which remained for over a millennium the longest bridge to have been built both in terms of overall and span length. They were most of the time at-least 60 ft above the body of water.An example of temporary military bridge construction are the two
Caesar's Rhine bridges .Dams
They also built many
dams for water collection, such as the Subiaco dams, two of which fedAnio Novus , one of the largest aqueducts ofRome . They built 72 dams in just one country,Spain and many more are known across the Empire, some of which are still in use. At one site, Montefurado in Galicia, they appear to have built a dam across the river Sil to expose alluvial gold deposits in the bed of the river. The site is near the spectacular Roman gold mine ofLas Medulas . Several earthen dams are known from Britain, including a well-preserved example from Roman Lanchester,Longovicium , where it may have been used in industrial-scalesmithing orsmelting , judging by the piles of slag found at this site in northern England. Tanks for holding water are also common along aqueduct systems, and numerous examples are known from just one site, the gold mines atDolaucothi in westWales . Masonry dams were common inNorth Africa for providing a reliable water supply from thewadi s behind many settlements.Mining
The Romans also made great use of aqueducts in their extensive mining operations across the empire, some sites such as
Las Medulas in north-west Spain having at least 7 major channels entering the minehead. Other sites such asDolaucothi in southWales was fed by at least 5leat s, all leading to reservoirs and tanks orcistern s high above the present opencast. The water was used forhydraulic mining , where streams or waves of water are released onto the hillside, first to reveal any gold-bearing ore, and then to work the ore itself. Rock debris could be sluiced away byhushing , and the water also used to douse fires created to break down the hard rock and veins, a method known asfire-setting .Alluvial
gold deposits could be worked and thegold extracted without needing to crush the ore. Washing tables were fitted below the tanks to collect the gold-dust and any nuggets present. Vein gold needed crushing, and they probably used crushing or stamp mills worked by water-wheels to comminute the hard ore before washing. Large quantities of water were also needed in deep mining to remove waste debris and power primitive machines, as well as for washing the crushed ore.Pliny the Elder provides a detailed description of gold mining in book xxxiii of hisNaturalis Historia , most of which has been confirmed byarchaeology . That they used water mills on a large scale elsewhere is attested by the flour mills atBarbegal in southernFrance , and on theJaniculum inRome .anitation
The Romans were one of the first known civilizations to invent indoor plumbing. The Roman public baths, or "
thermae " served hygienic, social and cultural functions. The baths contained three main facilities for bathing. After undressing in theapodyterium or changing room, Romans would proceed to thetepidarium or warm room. In the moderate dry heat of the tepidarium, some performed warm-up exercises and stretched while others oiled themselves or had slaves oil them. The tepidarium’s main purpose was to promote sweating to prepare for the next room, thecaldarium or hot room. The caldarium, unlike the tepidarium, was extremely humid and hot. Temperatures in the caldarium could reach 40 degreesCelsius (104 degrees Fahrenheit). Many contained steam baths and a cold-water fountain known as thelabrum . The last room was thefrigidarium or cold room, which offered a cold bath for cooling off after the caldarium. The Romans also hadflush toilet s.cience, logic, and mathematics
If we define Roman by period then the stunning
Antikythera mechanism is a Roman analogue computer.The Romans developed theRoman abacus , the first portable counting device, based on earlier Greek counting boards. It greatly reduced the time needed to perform basicRoman arithmetic operations, and was used heavily by merchants, tax collectors and engineers. It was also used by rich schoolchildren, and another version was to help calculate the movement of the planets.They were excellent surveyors, using at least four instruments, the
groma ,chorobates ,dioptra andodometer in building aqueducts and other large structures. They are described and discussed byVitruvius andPliny the Elder . The Romans made manymap s, a few of which have survived in degraded form, as shown by theRavenna Cosmography and thePeutinger Table . The latter is anitinerary of theRoman Empire , so directions are totally distorted for the sake of a linear sequence.Roman numerals , the basis for Roman mathematics, were derived from the earlierEtruscan numerals .Roman military technology
The Roman military had some of the most advanced technology available to armies of the time. This ranged from personal equipment and armament to deadly siege engines. They inherited almost all ancient weapons.
While heavy, intricate armour was not uncommon (
cataphracts ), the Romans perfected a relatively light, full torso armour made of segmented plates (lorica segmentata ). This segmented armour provided flexibility and protection of most vital areas, and was not associated with the laborious craftwork that other armours (such aschainmail ) were. Furthermore, the rest of the Roman soldier's equipment used similarly innovative and effective technology.The Roman cavalry saddle had four horns [http://www.caerleon.net/history/army/page9.html] and was believed to have been copied from Celtic peoples.
Roman siege engines such as
ballista s, scorpions and onagers were not unique. But the Romans were probably the first people to put ballistas on carts to provide battlefield support for the Roman legions. On the battlefield they were accurate enough to take out enemy leaders.List of Roman inventions and Roman-developed technologies
References
Further reading
Current state of research
* Andrew Wilson, "Machines, Power and the Ancient Economy", "The Journal of Roman Studies", Vol. 92 (2002), pp. 1-32
* Kevin Greene, "Technological Innovation and Economic Progress in the Ancient World: M.I. Finley Re-Considered", "The Economic History Review", New Series, Vol. 53, No. 1. (Feb., 2000), pp. 29-59General history of inventions
* Derry, Thomas Kingston and Trevor I. Williams. "A Short History of Technology: From the Earliest Times to A.D. 1900." New York : Dover Publications, 1993
* Williams, Trevor I. "A History of Invention From Stone Axes to Silicon Chips." New York, New York, Facts on File, 2000Metallurgy
* Neil Beagrie, "The Romano-British Pewter Industry", "Britannia", Vol. 20 (1989), pp.169-91Milling
* Lewis, M.J.T., 1997, "Millstone and Hammer", University of Hull Press
* Moritz, L.A., 1958, "Grainmills and Flour in Classical Antiquity", OxfordMining
* Oliver Davies, "Roman Mines in Europe", Clarendon Press (Oxford), 1935.
* Jones G. D. B., I. J. Blakey, and E. C. F. MacPherson, "Dolaucothi: the Roman aqueduct," "Bulletin of the Board of Celtic Studies" 19 (1960): 71-84 and plates III-V.
* Lewis, P. R. and G. D. B. Jones, "The Dolaucothi gold mines, I: the surface evidence," "The Antiquaries Journal", 49, no. 2 (1969): 244-72.
* Lewis, P. R. and G. D. B. Jones, "Roman gold-mining in north-west Spain," "Journal of Roman Studies" 60 (1970): 169-85.
* Lewis, P. R., "The Ogofau Roman gold mines at Dolaucothi," The National Trust Year Book 1976-77 (1977).
* Barry C. Burnham, "Roman Mining at Dolaucothi: the Implications of the 1991-3 Excavations near the Carreg Pumsaint", "Britannia" 28 (1997), 325-336
* A.H.V. Smith, "Provenance of Coals from Roman Sites in England and Wales", "Britannia", Vol. 28 (1997), pp.297-324Transport
* Lewis, M. J. T., [http://www.sciencenews.gr/docs/diolkos.pdf "Railways in the Greek and Roman world"] , in Guy, A. / Rees, J. (eds), "Early Railways. A Selection of Papers from the First International Early Railways Conference" (2001), pp. 8-19 (10-15)
* Werner, Walter: "The largest ship trackway in ancient times: the Diolkos of the Isthmus of Corinth, Greece, and early attempts to build a canal", The International Journal of Nautical Archaeology, Vol. 26, No. 2 (1997), pp. 98–119Overview of ancient technology
* Drachmann, A. G., "Mechanical Technology of Greek and Roman Antiquity", Lubrecht & Cramer Ltd, 1963 ISBN 0934454612
* Hodges, Henry., "Technology in the Ancient World", London: The Penguin Press, 1970
* Landels, J.G., "Engineering in the Ancient World", University of California Press, 1978
* White, K.D., "Greek and Roman Technology", Cornell University Press, 1984 Sails
* Toby, A.Steven "Another look at the Copenhagen Sarcophagus", "International Journal of Nautical Archaeology" 1974 vol.3.2: 205-211Water supply
* [http://www.uvm.edu/~rrodgers/Frontinus.html "De Aquaeductu Urbis Romae"] bySextus Julius Frontinus ("On the water management of the city of Rome", translated by R. H. Rodgers, 2003, University of Vermont) (retrievedNovember 22 ,2005 )
*note_label|waterhistory|2|a cite web
url=http://www.waterhistory.org/histories/rome/
title=Water and Wastewater Systems in Imperial Rome
work=WaterHistory.org
publisher= [http://www.iwha.net International Water History Association]
accessdate=2005-11-22
*cite web
url=http://www.swan.ac.uk/grst/Specific%20subjects/Engineering/engineering.htm
title=Greek and Roman Science and Technology: Engineering
accessdate=2008-04-13
last=Rihll
first=T.E.
date=2007-04-11
publisher=Swansea University
* Hodge, A.T. (2001). "Roman Aqueducts & Water Supply", 2nd ed. London: Duckworth.ee also
*
De Architectura
*Dolaucothi
*Frontinus
*History of technology
*Naturalis Historia
*Pliny the Elder
*Roman architecture
*Roman aqueducts
*Roman engineering
*Roman mining
*Vitruvius External links
* [http://traianus.rediris.es/ Traianus] - Technical investigation of Roman public works
* [http://www.humanist.de/rome/rts/index.html Roman Traction Systems] - Horse, harness, wagon
* [http://www.humanist.de/rome/harnessing/collar.html Roman Horse Harnesses] - With pictorial evidence
* [http://www.romanconcrete.com/ Roman Concrete] - Roman concrete buildings
* [http://traianus.rediris.es/textos/presas_in.htm Roman dams in Spain]
* [http://traianus.rediris.es/ Spanish site dedicated to Roman technology, especially aqueducts and mines]
Wikimedia Foundation. 2010.