Kinetic chain length

Kinetic chain length

In polymer chemistry the kinetic chain length of a polymer, "ν" , is the average number of monomers added to each polymerizing radical during polymerization. During this process, a polymer chain is formed when units called monomers are bonded together to form longer chains known as polymers. Kinetic chain length is defined as the average number of monomer units consumed for each radical initiator that begins the polymerization of a chain and is a more general development of the average degree of polymerization. The kinetic chain length can be calculated several ways, and its value can describe certain characteristics of the material, including chain mobility, glass-transition temperature, and modulus of elasticity.

Calculating chain length

For chain-growth polymerization, the average kinetic chain length is defined as the ratio of the number of propagation steps to the number of initiation steps:

: v = frac{R_p}{R_i} = frac{R_p}{R_t}

where Rp is the rate of propagation, Ri is the rate of initiation of polymerization, and Rt is the rate of termination of the polymer chain. The second form of the equation is valid at steady-state polymerization, as the chains are being initiated at the same rate they are being terminated (Ri = Rt). [Hiemenz, Paul C., and Timothy P. Lodge. Polymer Chemistry. 2nd ed. Boca Raton, FL: CRC Press, 2007. 94-96.]

An analogous equation can be written for living polymerization, a type of addition polymerization, and is usually written as:

: v = frac{ [M] _0- [M] }{ [I] _0}

where [M] 0- [M] represents the number of monomer units consumed, and [I] 0 the number of radicals that initiate polymerization. When the reaction goes to completion, [M] =0, and then the kinetic chain length is equal to the number average degree of polymerization of the polymer.


* Kinetic chain length is an average quantity, as not all polymer chains are identical in length.
* The value of ν depends on the nature and concentration of both the monomer and initiator involved.
* Kinetic chain length can be calculated with or without chain transfer being considered. [Professor Paula Hammond, 10.569 Synthesis of Polymers Fall 2006 materials, MIT OpenCourseWare (, Massachusetts Institute of Technology, 7 Dec 2007.]

Kinetic chain length without transfer

Termination by disproportionation

Termination by disproportionation occurs when an atom is transferred from one polymer free radical to another. The atom is usually hydrogen, and this results in two polymer chains.

In this situation, the average kinetic chain length is equal to the number average degree of polymerization (DPn):

: v = DP_n

Termination by combination

With combination, two radicals are joined together, destroying the radicals on each of the two chains and forming one polymeric chain. Here, the average kinetic chain length is defined as:

: v = frac{DP_n}{2}

Kinetic chain length with chain transfer

In the case of chain transfer, another atom (often hydrogen) is transferred from a molecule in the system to the polymer radical. The original polymer chain is terminated and a new one is initiated. ["Chain Transfer." IUPAC Compendium of Chemical Terminology. 1997. IUPAC. 6 Dec. 2007 .] As a result, the kinetic chain length is shortened. Thus, the kinetic chain length is redefined as:

: v_{tr} = frac{R_p}{R_t + R_{tr

where Rtr is the rate of transfer. The greater Rtr is, the shorter the kinetic chain length.


The chain length of the polymer is important in many aspects of its properties.
* Viscosity - Chain entanglements are very important in viscous flow behavior (viscosity) of polymers. As the chain becomes longer, chain mobility decreases; that is, the chains become more entangled with each other.
* Glass-transition temperature - An increase in chain length often leads to an increase in the glass-transition temperature, Tg. The increased chain length causes the chains to become more entangled at a given temperature. Therefore, a temperature does not need to be as low for the material to act as a solid.
* Modulus of Elasticity - A longer chain length is also associated with a material tends to be tougher and has a higher modulus of elasticity, E, also known as the Young's modulus. The interaction of the chains causes the polymer to become stiffer.


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Kinetic isotope effect — The kinetic isotope effect (KIE) is the ratio of reaction rates of two different isotopically labeled molecules in a chemical reaction. It is also called isotope fractionation, although this term is somewhat broader in meaning. A KIE involving… …   Wikipedia

  • Degree of polymerization — The degree of polymerization, or DP, is usually defined as the number of monomeric units in a macromolecule or polymer or oligomer molecule.[1][2][3] For a homopolymer, there is only one type of monomeric unit and the number average degree of… …   Wikipedia

  • Stabilizers for polymers — are used directly or by combinations to prevent the various effects such as oxidation, chain scission and uncontrolled recombinations and cross linking reactions that are caused by photo oxidation of polymers. Polymers are considered to get… …   Wikipedia

  • chemical kinetics — Introduction       the branch of physical chemistry (chemistry) that is concerned with understanding the rates of chemical reactions (chemical reaction). It is to be contrasted with thermodynamics, which deals with the direction in which a… …   Universalium

  • Theoretical ecology — Mathematical models developed in theoretical ecology predict complex food webs are less stable than simple webs.[1]:75–77[2]:64 …   Wikipedia

  • Robert Gilbert (chemist) — Robert G. Gilbert (born 1946) is one of the world s foremost polymer chemists, particularly in the field of emulsion polymerisation. In 1970, he gained his PhD from the Australian National University, and worked at the University of Sydney from… …   Wikipedia

  • Enol — Enols (also known as alkenols) are alkenes with a hydroxyl group affixed to one of the carbon atoms composing the double bond. Enols and carbonyl compounds (such as ketones and aldehydes) are in fact isomers; this is called keto enol… …   Wikipedia

  • Polyethylene glycol — IUPAC name poly(oxyethylene) {structure based}, poly(ethylene oxide) {source based} …   Wikipedia

  • Anaerobic digestion — and regenerative thermal oxidiser component of Lübeck mechanical biological treatment plant in Germany, 2007 …   Wikipedia

  • Methyl butyrate — Methyl butyrate[1] IUPAC name Methyl bu …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”