Fodor's lemma

Fodor's lemma

In mathematics, particularly in set theory, Fodor's lemma states the following:

If kappa is a regular, uncountable cardinal, S is a stationary subset of kappa, and f:kappa ightarrowkappa is regressive on S (that is, f(alpha) for any alphain S, alpha eq 0) then there is some gamma and some stationary S_0subseteq S such that f(alpha)=gamma for any alphain S_0. In modern parlance, the nonstationary ideal is "normal".

A proof of Fodor's lemma is as follows:

If we let f^{-1}:kappa ightarrow P(S) be the inverse of f restricted to S then Fodor's lemma is equivalent to the claim that for any function such that alphain f(kappa) ightarrow alpha>f(alpha) there is some alphain S such that f^{-1}(alpha) is stationary.

Then if Fodor's lemma is false, for every alphain S there is some club set C_alpha such that C_alphacap f^{-1}(alpha)=emptyset. Let C=Delta_{alpha. The club sets are closed under diagonal intersection, so C is also club and therefore there is some alphain Scap C. Then alphain C_eta for each eta, and so there can be no eta such that alphain f^{-1}(eta), so f(alpha)geqalpha, a contradiction.

The lemma was first proved by the Hungarian set theorist, Géza Fodor in 1952.

References

* Karel Hrbacek & Thomas Jech, "Introduction to Set Theory", 3rd edition, Chapter 11, Section 3.
* Mark Howard, "Applications of Fodor's Lemma to Vaught's Conjecture". Ann. Pure and Appl. Logic 42(1): 1-19 (1989).
* Simon Thomas, "The Automorphism Tower Problem". PostScript file at [http://www.math.rutgers.edu/~sthomas/book.ps]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Fodor — The name Fodor can refer to: *Carel Anton Fodor (1768 1846), Dutch conductor and composer *Eugene Fodor American violin virtuoso *Fodor s Travel Guides the largest English language travel information provider **Eugene Fodor (writer), founder of… …   Wikipedia

  • Satz von Fodor — Der Satz von Fodor (auch: Pressing Down Lemma) ist ein Satz aus der Mengenlehre, der 1956 von dem ungarischen Mathematiker Géza Fodor entdeckt wurde. Er besagt, dass es für bestimmte Funktionen immer große (d.h. stationäre) Teilmengen gibt, auf… …   Deutsch Wikipedia

  • List of lemmas — This following is a list of lemmas (or, lemmata , i.e. minor theorems, or sometimes intermediate technical results factored out of proofs). See also list of axioms, list of theorems and list of conjectures. 0 to 9 *0/1 Sorting Lemma ( comparison… …   Wikipedia

  • List of mathematics articles (F) — NOTOC F F₄ F algebra F coalgebra F distribution F divergence Fσ set F space F test F theory F. and M. Riesz theorem F1 Score Faà di Bruno s formula Face (geometry) Face configuration Face diagonal Facet (mathematics) Facetting… …   Wikipedia

  • Stationary set — In mathematics, particularly in set theory and model theory, there are at least three notions of stationary set:Classical notionIf kappa is a cardinal of uncountable cofinality, Csubseteqkappa, and C intersects every club in kappa, then C is… …   Wikipedia

  • Diagonal intersection — is a term used in mathematics, especially in set theory. If is an ordinal number and is a sequence of subsets of , then the diagonal intersection, denoted by is defined to be …   Wikipedia

  • Liste mathematischer Sätze — Inhaltsverzeichnis A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Satz von Abel Ruffini: eine allgemeine Polynomgleichung vom …   Deutsch Wikipedia

  • Phonology — (Greek φωνή (phōnē), voice, sound + λόγος (lógos), word, speech, subject of discussion) is the systematic use of sound to encode meaning in any spoken human language, or the field of linguistics studying this use. Just as a language has syntax… …   Wikipedia

  • Sprachfähigkeit — Die Psycholinguistik ist die Wissenschaft von der menschlichen Sprachfähigkeit. Traditionell wird die Psycholinguistik in drei Bereiche unterteilt, die Sprachwissensforschung, die Spracherwerbsforschung und die Sprachprozessforschung. Die… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”