- Edouard Goursat
Infobox Scientist
name = Edouard Goursat
box_width =
image_width =150px
caption = Edouard Goursat
birth_date =21 May 1858
birth_place =Lanzac , Lot
death_date =25 November 1936
death_place =
residence =
citizenship =
nationality =France
ethnicity =
field =mathematics
work_institutions =
alma_mater =École Normale Supérieure
doctoral_advisor =
doctoral_students =
known_for =
author_abbrev_bot =
author_abbrev_zoo =
influences =
influenced =
prizes =
religion =
footnotes =
Edouard Jean-Baptiste Goursat (21 May 1858 –25 November 1936 ) was a French mathematician, now remembered principally as an expositor for his "Cours d'analyse mathématique", which appeared in the first decade of the twentieth century. It set a standard for the high-level teaching ofmathematical analysis , especiallycomplex analysis . This text was reviewed byWilliam Fogg Osgood for the Bulletin of the American Mathematical Society. This led to its translation in English byEarle Raymond Hedrick published by Ginn and Company. Goursat also published texts onpartial differential equation s andhypergeometric series .Edouard Goursat was born in
Lanzac , Lot. He was a graduate of theÉcole Normale Supérieure , where he later taught and developed his "Cours". At that time thetopological foundations of complex analysis were still not clarified, with theJordan curve theorem considered a challenge tomathematical rigour (as it would remain untilL. E. J. Brouwer took in hand the approach fromcombinatorial topology ). Goursat’s work was considered by his contemporaries, includingG. H. Hardy , to be exemplary in facing up to the difficulties inherent in stating the fundamentalCauchy integral theorem properly. For that reason it is sometimes called theCauchy-Goursat theorem .Books by Edouard Goursat
* [http://www.archive.org/details/coursemathanalys01gourrich A Course In Mathematical Analysis Vol I] Translated by O. Dunkel and E. R. Hedrick (Ginn and Company, 1904)
* [http://www.archive.org/details/coursemathema0102gourrich A Course In Mathematical Analysis Vol II, part I] Translated by O. Dunkel and E. R. Hedrick (Ginn and Company, 1916) (Complex analysis)
* [http://www.archive.org/details/differentalequat033197mbp A Course In Mathematical Analysis Vol II Part II] Translated by O. Dunkel and E. R. Hedrick (Ginn and Company, 1917) (Differential Equations)* [http://name.umdl.umich.edu/ACR1803.0001.001 Leçons sur l'intégration des équations aux dérivées partielles du premier ordre] (Hermann, Paris, 1891)
* [http://gallica.bnf.fr/document?O=N084146 Leçons sur l'intégration des équations aux dérivées partielles du second ordre, à deux variables indépendantes Tome 1] (Hermann, Paris 1896-1898)
* [http://gallica.bnf.fr/document?O=N084147 Leçons sur l'intégration des équations aux dérivées partielles du second ordre, à deux variables indépendantes Tome 2] (Hermann, Paris 1896-1898)
* [http://gallica.bnf.fr/document?O=N038309 Leçons sur les séries hypergéométriques et sur quelques fonctions qui s'y rattachent] (Hermann, Paris, 1936-1939)
* [http://gallica.bnf.fr/document?O=N038954 Le problème de Bäcklund] (Gauthier-Villars, Paris, 1925)
* [http://gallica.bnf.fr/document?O=N099552 Leçons sur le problème de Pfaff] (Hermann,Paris, 1922)
* [http://gallica.bnf.fr/document?O=N099595 Théorie des fonctions algébriques et de leurs intégrales : étude des fonctions analytiques sur une surface de Riemann] withPaul Appell (Gauthier-Villars, Paris, 1895)
* [http://gallica.bnf.fr/document?O=N092706 Théorie des fonctions algébriques d'une variable et des transcendantes qui s'y rattachent Tome II, Fonctions automorphes] with Paul Appell (Gauthier-Villars, 1930)External links
*
* William Fogg Osgood [http://projecteuclid.org/euclid.bams/1183417526 A modern French Calculus] Bull. Amer. Math. Soc. 9, (1903), pp. 547-555.
* William Fogg Osgood [http://projecteuclid.org/euclid.bams/1183418774 Review: Edouard Goursat, A Course in Mathematical Analysis] Bull. Amer. Math. Soc. 12, (1906), p. 263.
*MathGenealogy |id=96283
Wikimedia Foundation. 2010.