Landau–Zener formula

Landau–Zener formula

The Landau–Zener formula is an analytic solution to the equations of motion governing the transition dynamics of a 2-level quantum mechanical system, with a time-dependent Hamiltonian varying such that the energy separation of the two states is a linear function of time. The formula, giving the probability of a diabatic (not adiabatic) transition between the two energy state, was published separately by Lev Landaucite journal |author=L. Landau |title=Zur Theorie der Energieubertragung. II |journal=Physics of the Soviet Union |volume=2 |issue= |pages=46–51 |year=1932 |url= |pmid= |doi=] and Clarence Zenercite journal |author=C. Zener |title=Non-adiabatic Crossing of Energy Levels |journal=Proceedings of the Royal Society of London, Series A |volume=137 |issue=6 |pages=692–702 |year=1932 |url=http://links.jstor.org/sici?sici=0950-1207(19320901)137%3A833%3C696%3ANCOEL%3E2.0.CO%3B2-I |pmid= |doi=] in 1932.

If the system starts, in the infinite past, in the lower energy eigenstate, we wish to calculate the probability of finding the system in the upper energy eigenstate in the infinite future (a so-called Landau-Zener transition). For infinitely slow variation of the energy difference (that is, a Landau-Zener velocity of zero), the adiabatic theorem tells us that no such transition will take place, as the system will always be in an instantaneous eigenstate of the Hamiltonian at that moment in time. At non-zero velocities, transitions occur with probability as described by the Landau-Zener formula.

Landau-Zener approximation

Such transitions occur between states of the entire system, hence any description of the system must include all external influences, including collisions and external electric and magnetic fields. In order that the equations of motion for the system might be solved analytically, a set of simplifications are made, known collectively as the Landau–Zener approximation. The simplifications are as follows:

# The perturbation parameter in the Hamiltonian is a known, linear function of time
# The energy separation of the diabatic states varies linearly with time
# The coupling in the diabatic Hamiltonian matrix is independent of time

The first simplification makes this a semi-classical treatment. In the case of an atom in a magnetic field, the field strength becomes a classical variable which can be precisely measured during the transition. This requirement is quite restrictive as a linear change will not, in general, be the optimal profile to achieve the desired transition probability.

The second simplification allows us to make the substitution

:Delta E = E_2(t) - E_1(t) equiv alpha t,

where scriptstyle{E_1(t)} and scriptstyle{E_2(t)} are the energies of the two states at time scriptstyle{t}, given by the diagonal elements of the Hamiltonian matrix, and scriptstyle{alpha} is a constant. For the case of an atom in a magnetic field this corresponds to a linear change in magnetic field. For a linear Zeeman shift this follows directly from point 1.

The final simplification requires that the time–dependent perturbation does notcouple the diabatic states; rather, the coupling must be due to a static deviation froma scriptstyle{1/r} coulomb potential, commonly described by a quantum defect.

The Landau-Zener formula

The details of Zener’s solution are somewhat opaque, relying on a set of substitutionsto put the equation of motion into the form of the Weber equationcite book |last=Abramowitz |first=M. |coauthors=I. A. Stegun |title=Handbook of Mathematical Functions |edition=9 |year=1976 |publisher=Dover Publications |location= |isbn=0486612724 |pages=498 |chapter= ] and usingthe known solution. A more transparent solution is provided by Wittigcite journal |author=C. Wittig |title=The Landau–Zener Formula |journal=Journal of Physical Chemistry B |volume=109 |issue=17 |pages=8428–8430 |year=2005 |url=https://pubs.acs.org/secure/login?url=http%3A%2F%2Fpubs.acs.org%2Fcgi-bin%2Farticle.cgi%2Fjpcbfk%2F2005%2F109%2Fi17%2Fpdf%2Fjp040627u.pdf |pmid= |doi=] using contour integration.

The key figure of merit in this approach is the Landau-Zener velocity:

:v_{LZ} = {frac{partial}{partial t}|E_2 - E_1| over frac{partial}{partial q}|E_2 - E_1 approx frac{dq}{dt},

where scriptstyle{q} is the perturbation variable (electric or magnetic field, molecular bond-length, or any other perturbation to the system), and scriptstyle{E_1} and scriptstyle{E_2} are the energies of the two diabatic (crossing) states. A large scriptstyle{v_{LZ results in a large diabatic transition probability and vice versa.

Using the Landau-Zener formula the probability, scriptstyle{P_D}, of a diabatic transition is given by

:egin{align} P_D &= e^{-2piGamma}\Gamma &= {a^2/hbar over left|frac{partial}{partial t}(E_2 - E_1) ight = {a^2/hbar over left|frac{dq}{dt}frac{partial}{partial q}(E_2 - E_1) ight\ &= {a^2 over hbar|alpha\end{align}

See also

* Adiabatic theorem

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Fórmula de Landau-Zener — La fórmula de Landau–Zener es una solución analítica a las ecuaciones de movimiento que gobiernan las dinámicas de las transiciones de un sistema mecanocuántico de dos niveles sometido a un Hamiltoniano dependiente del tiempo. Es válida cuando el …   Wikipedia Español

  • Transition de Landau-Zener — Formule de Landau Zener La formule de Landau Zener est une solution analytique aux équations du mouvement gouvernant la dynamique de transition d un système quantique à deux niveaux d énergie, avec un hamiltonien dépendant du temps qui varie de… …   Wikipédia en Français

  • Formule de Landau-Zener — La formule de Landau Zener est une solution analytique aux équations du mouvement gouvernant la dynamique de transition d un système quantique à deux niveaux d énergie, avec un hamiltonien dépendant du temps qui varie de manière à ce que la… …   Wikipédia en Français

  • Clarence Zener — Clarence Melvin Zener (December 1, 1905 – July 15, 1993) was the American physicist who first described the property concerning the breakdown of electrical insulators.[1] These findings were later exploited by Bell Labs in the development of the… …   Wikipedia

  • Adiabatic theorem — The adiabatic theorem is an important concept in quantum mechanics. Its original form, due to Max Born and Vladimir Fock (1928),cite journal |author=M. Born and V. A. Fock |title=Beweis des Adiabatensatzes |journal=Zeitschrift für Physik A… …   Wikipedia

  • Curt Wittig — Nationality American Fields Chemistry Institutions …   Wikipedia

  • Scientific phenomena named after people — This is a list of scientific phenomena and concepts named after people (eponymous phenomena). For other lists of eponyms, see eponym. NOTOC A* Abderhalden ninhydrin reaction Emil Abderhalden * Abney effect, Abney s law of additivity William de… …   Wikipedia

  • Quantum chemistry — is a branch of theoretical chemistry, which applies quantum mechanics and quantum field theory to address issues and problems in chemistry. The description of the electronic behavior of atoms and molecules as pertaining to their reactivity is one …   Wikipedia

  • Marcus theory — is a theory originally developed by Rudolph A. Marcus, starting in 1956, to explain the rates of electron transfer reactions – the rate at which an electron can move or jump from one chemical species (called the electron donor) to another (called …   Wikipedia

  • Proceso adiabático — Gráfico de un proceso adiabático en función de p y V. En termodinámica se designa como proceso adiabático a aquél en el cual el sistema (generalmente, un fluido que realiza un trabajo) no intercambia calor con su entorno. Un proceso adiabático… …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”