Analytic torsion

Analytic torsion

In mathematics, Reidemeister torsion (or R-torsion, or Reidemeister–Franz torsion) is a topological invariant of manifolds introduced by Kurt Reidemeister (Reidemeister (1935)) for 3-manifolds and generalized to higher dimensions by Franz (1935) and de Rham (1936). Analytic torsion (or Ray–Singer torsion) is an invariant of Riemannian manifolds defined by Ray and Singer (1971, 1973a, 1973b) as an analytic analogue of Reidemeister torsion. Cheeger (1977, 1979) and Müller (1978) proved Ray and Singer's conjecture that Reidemeister torsion and analytic torsion are the same for compact Riemannian manifolds.

Reidemeister torsion was the first invariant in algebraic topology that could distinguish between spaces which are homotopy equivalent but not homeomorphic, and can thus be seen as the birth of geometric topology as a distinct field. It can be used to classify lens spaces.

Reidemeister torsion is closely related to Whitehead torsion; see (Milnor 1966). For later work on torsion see the books (Turaev 2002), (Nicolaescu 2002, 2003).

Contents

Definition of analytic torsion

If M is a Riemannian manifold and E a vector bundle over M, then there is a Laplacian operator acting on the i-forms with values in E. If the eigenvalues on i-forms are λj then the zeta function ζi is defined to be

\zeta_i(s) = \sum_{\lambda_j>0}\lambda_j^{-s}

for s large, and this is extended to all complex s by analytic continuation. The zeta regularized determinant of the Laplacian acting on i-forms is

\Delta_i=\exp(-\zeta^\prime_i(0))

which is formally the product of the positive eigenvalues of the laplacian acting on i-forms. The analytic torsion T(M,E) is defined to be

T(M,E) = \exp\left(\sum_i (-1)^ii \zeta^\prime_i(0)/2\right) = \prod_i\Delta_i^{-(-1)^ii/2}.

Definition of Reidemeister torsion

Let X be a finite connected CW-complex with fundamental group π := π1(X) and U an orthogonal finite-dimensional π-representation. Suppose that

H^\pi_n(X;U) := H_n(U \otimes_{\mathbf{Z}[\pi]} C_*({\tilde X})) = 0

for all n. If we fix a cellular basis for C_*({\tilde X}) and an orthogonal R-basis for U, then D_* := U \otimes_{\mathbf{Z}[\pi]} C_*({\tilde X}) is a contractible finite based free R-chain complex. Let \gamma_*: D_* \to D_{*+1} be any chain contraction of D*, i.e. d_{n+1} \circ \gamma_n + \gamma_{n-1} \circ d_n = id_{D_n} for all n. We obtain an isomorphism (d_* + \gamma_*)_{odd}: D_{odd} \to D_{even} with D_{odd} := \oplus_{n \, odd} \, D_n, D_{even} := \oplus_{n \, even} \, D_n. We define the Reidemeister torsion

\rho(X;U) := |\mathop{det}(A)| \in \mathbf{R}^{>0}

where A is the matrix of (d* + γ*)odd with respect to the given bases. The Reidemeister torsion ρ(X;U) is independent of the choice of the cellular basis for C_*({\tilde X}), the orthogonal basis for U and the chain contraction γ*.

Examples

Reidemeister torsion was first used to classify 3-dimensional lens spaces in (Reidemeister 1935). The classification includes examples of homotopy equivalent 3-dimensional manifolds which are not homeomorphic – at the time (1935) the classification was only up to PL homeomorphism, but later (Brody 1960) showed that this was in fact a classification up to homeomorphism.

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Torsion (algebra) — In abstract algebra, the term torsion refers to a number of concepts related to elements of finite order in groups and to the failure of modules to be free. Definition Let G be a group. An element g of G is called a torsion element if g has… …   Wikipedia

  • Torsion — The term torsion may refer the following:*In geometry: ** Torsion of curves ** Torsion tensor in differential geometry ** Analytic torsion (also called Ray Singer torsion) ** Reidemeister torsion (also called R torsion, Franz torsion, de Rham… …   Wikipedia

  • List of mathematics articles (A) — NOTOC A A Beautiful Mind A Beautiful Mind (book) A Beautiful Mind (film) A Brief History of Time (film) A Course of Pure Mathematics A curious identity involving binomial coefficients A derivation of the discrete Fourier transform A equivalence A …   Wikipedia

  • Werner Müller (Mathematiker) — Werner Müller (* 7. September 1949 in Großschönau) ist ein deutscher Mathematiker, der sich mit Globaler Analysis und automorphen Formen beschäftigt. Er lehrt an der Universität Bonn. Werner Müller, Oberwolfach 2010 Inhaltsverzeichnis …   Deutsch Wikipedia

  • List of geometric topology topics — This is a list of geometric topology topics, by Wikipedia page. See also: topology glossary List of topology topics List of general topology topics List of algebraic topology topics Publications in topology Contents 1 Low dimensional topology 1.1 …   Wikipedia

  • Jean-Michel Bismut — (* 26. Februar 1948 in Lissabon) ist ein französischer Mathematiker, der sich mit Analysis und Wahrscheinlichkeitstheorie beschäftigt. Jean Michel Bismut Leben und Wirken Jean Michel Bismut studierte ab 1967 an der …   Deutsch Wikipedia

  • Henri Gillet — Henri Antoine Gillet ist ein in Chicago lehrender Mathematiker, der sich insbesondere mit arithmetischer und algebraischer Geometrie beschäftigt. Henri Gillet Gillet studierte am Kings College in London (Bachelor 1974) und wurde 1978 bei David… …   Deutsch Wikipedia

  • Katrin Wendland — Katrin Wendland, Oberwolfach 2010 Katrin Wendland (* 18. Juli 1970 in Berlin) ist eine deutsche Mathematikerin und mathematische Physikerin, die sich mit geometrischen Aspekten der Stringtheorie befasst. Wendland machte 1996 ihr Diplom in… …   Deutsch Wikipedia

  • Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… …   Wikipedia

  • Abelian variety — In mathematics, particularly in algebraic geometry, complex analysis and number theory, an Abelian variety is a projective algebraic variety that is at the same time an algebraic group, i.e., has a group law that can be defined by regular… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”