John Guckenheimer

John Guckenheimer

John Guckenheimer (b. 1945, Baton Rouge, LA) joined the Department of Mathematics at Cornell University in 1985. He was previously at the University of California at Santa Cruz (1973-1985). He was a Guggenheim fellow in 1984, and was elected president of the Society for Industrial and Applied Mathematics in 1996. Guckenheimer received his B.A. from Harvard University in 1966 and his Ph.D. from the University of California at Berkeley in 1970. [cite web
url=http://www.cam.cornell.edu/guckenheimer/cv.html
title=John Guckenheimer, Professor of Mathematics and Theoretical and Applied Mechanics
accessdate= 2008-03-31
author=John Guckenheimer
publisher=Cornell University
] His Ph.D. thesis advisor was Stephen Smale. [cite web
url=http://genealogy.math.ndsu.nodak.edu/id.php?id=22538
title=Mathematics Genealogy Project
accessdate= 2008-03-31
author=The Mathematics Genealogy Project
publisher=North Dakota State University, Fargo, North Dakota.
]

His book "Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields" (with Philip Holmes) is an extensively cited work on dynamical systems.

Research

Dr. John Guckenheimer's research has focused on three areas - neuroscience, algorithms for periodic orbits, and dynamics in systems with multiple time scales. [cite web
url=http://www.cam.cornell.edu/guckenheimer/research.html
title=Research
accessdate= 2008-03-31
author=John Guckenheimer
publisher=Cornell University
]

Neuroscience

Guckenheimer studies dynamical models of a small neural system, the stomatogastric ganglion of crustaceans - attempting to learn more about neuromodulation, the ways in which the rhythmic output of the STG is modified by chemical and electrical inputs.

Algorithms for Periodic Orbits

Employing automatic differentiation, Guckenheimer has constructed a new family of algorithms that compute periodic orbits directly. His research in this area attempts to automatically compute bifurcations of periodic orbits as well as "generate rigorous computer proofs of the qualitative properties of numerically computed dynamical systems".

Dynamics in systems with Multiple Time Scales

Guckenheimer's research in this area is aimed at "extending the qualitative theory of dynamical systems to apply to systems with multiple time scales". Examples of systems with multiple time scales include neural systems and switching controllers.

DsTool

Guckenheimer's research has also included the development of computer methods used in studies of nonlinear systems. He has overseen the development of DsTool, an interactive software laboratory for the investigation of dynamical systems. [cite web
url=http://www.cam.cornell.edu/guckenheimer/dstool.html
title=DsTool
accessdate= 2008-03-31
author=John Guckenheimer
publisher=Cornell University
]

elected publications

* "Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields" (with P. Holmes), Springer-Verlag, 1983, 453 pp.
* "Phase portraits of planar vector fields: computer proofs", J. Experimental Mathematics 4 (1995), 153–164.
* "An improved parameter estimation method for Hodgkin-Huxley model" (with A. R. Willms, D. J. Baro and R. M. Harris-Warrick), J. Comp. Neuroscience 6 (1999), 145–168.
* "Computing periodic orbits and their bifurcations with automatic differentiation" (with B. Meloon), SIAM J. Sci. Stat. Comp. 22 (2000), 951–985.
* "The forced van der Pol equation I: the slow flow and its bifurcations" (with K. Hoffman and W. Weckesser), SIAM J. App. Dyn. Sys. 2 (2002), 1–35.

Notes

References

* cite web
url=http://www.cam.cornell.edu/guckenheimer/Guckenheimer.html
title=John Guckenheimer, Professor of Mathematics and Theoretical and Applied Mechanics, Cornell University
accessdate= 2008-03-31
author=John Guckenheimer
publisher=Cornell University

* cite web
url=http://www.math.cornell.edu/People/Faculty/guckenheimer.html
title=John M. Guckenheimer, Professor of Mathematics
accessdate= 2008-03-31
author=John Guckenheimer
publisher=Cornell University

External links

* [http://www.math.cornell.edu/~gucken/ Department of Mathematics home page]
* [http://tam.cornell.edu/faculty-bio.cfm?NetID=gucken Theoretical & Applied Mechanics home page]
* [ftp://cam.cornell.edu/pub/dstool DsTool FTP download area]
* [http://www.scholarpedia.org/article/User:Guckenheimer Dr. John Guckenheimer] user page on Scholarpedia


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • John Guckenheimer — (* 26. September 1945 in Baton Rouge, Louisiana) ist ein US amerikanischer Mathematiker, der sich mit dynamischen Systemen beschäftigt. Guckenheimer studierte an der Harvard University (Bachelor Abschluss 1966) und an der University of California …   Deutsch Wikipedia

  • Guckenheimer — John Guckenheimer (* 1945 in Baton Rouge, Louisiana) ist ein US amerikanischer Mathematiker, der sich mit dynamischen Systemen beschäftigt. Guckenheimer studierte an der Harvard University (Bachelor Abschluss 1966) und an der University of… …   Deutsch Wikipedia

  • Liste der Biografien/Gu — Biografien: A B C D E F G H I J K L M N O P Q …   Deutsch Wikipedia

  • Lorenzattraktor — Beim Lorenz Attraktor handelt es sich um den seltsamen Attraktor eines Systems von drei gekoppelten, nichtlinearen gewöhnlichen Differentialgleichungen: Formuliert wurde das System um 1963 von dem Meteorologen Edward N. Lorenz, der es als… …   Deutsch Wikipedia

  • Homoclinic orbit — In mathematics, a homoclinic orbit is a trajectory of a flow of a dynamical system which joins a saddle equilibrium point to itself. More precisely, a homoclinic orbit lies in the intersection of the stable manifold and the unstable manifold of… …   Wikipedia

  • Heteroclinic orbit — In mathematics, in the phase portrait of a dynamical system, a heteroclinic orbit (sometimes called a heteroclinic connection) is a path in phase space which joins two different equilibrium points. If the equilibrium points at the start and end… …   Wikipedia

  • Philip Holmes — Philip J. Holmes (born 1945) is the Charles N. Mellowes Professor of Engineering and Professor of Mathematics at Princeton University. As a member of the Mechanical and Aerospace Engineering department, he formerly served as the interim chair… …   Wikipedia

  • Numerical continuation — is a method of computing approximate solutions of a system of parameterized nonlinear equations, The parameter λ is usually a real scalar, and the solution an n vector. For a fixed parameter value λ,, maps Euclidean n space into itself. Often the …   Wikipedia

  • Dynamisches System — Unter einem (deterministischen) dynamischen System versteht man das mathematische Modell eines zeitabhängigen Prozesses, der homogen bezüglich der Zeit ist, also dessen Verlauf zwar vom Anfangszustand, aber nicht vom Anfangszeitpunkt abhängt. Der …   Deutsch Wikipedia

  • Hopf-Bifurkation — Eine Hopf Bifurkation oder Hopf Andronov Bifurkation ist ein Typ einer lokalen Bifurkation in nichtlinearen Systemen. Sie ist nach dem österreichischen Mathematiker Eberhard Frederich Ferdinand Hopf benannt. Hopf Bifurkationen zeichnen sich… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”