Advanced superionic conductor

Advanced superionic conductor

The term of advanced superionic conductors (AdSIC) was first introduced in the paper by A.L.Despotuli, A.V.Andreeva and B.Rambaby[1].

AdSICs are fast ion conductors that have a crystal structure close to optimal for fast ion transport (FIT). The rigid ion sublattice of AdSIC has structure channels where mobile ions of opposite sign migrate. The ion-transport characteristics of AdSICs are very high, ionic conductivity, ~0.3/Ω cm (RbAg4I5, 300 K) and activation energy Ei~0.1 eV. This determines the temperature-dependent concentration of mobile ions ni~Ni x eEi/kBT capable to migrate in conduction channels at each moment (Ni~1022/cm3, ni~2x1020/cm3, 300 K).

Rubidium silver iodide –family is a group of the AdSICs compounds and solid solutions which are isostructural with the RbAg4I5 alpha modification. The examples of such compounds with mobile Ag+- and Cu+-cations are: KAg4I5, NH4Ag4I5, K1-xCsxAg4I5, Rb1-xCsxAg4I5, CsAg4Br1-xI2+x, CsAg4ClBr2I2, CsAg4Cl3I2, RbCu4Cl3I2, KCu4I5 and others [3-8].

For the RbAg4I5 AdSIC the peculiar features of crystal structure and dynamics of mobile ions were studied in [9,10]

Recently, all solid state micrometre-sized supercapacitors based on AdSICs (nanoionic supercapacitors) had been recognized as critical electron component of future sub-voltage and deep-sub-voltage nanoelectronics and related technologies (22 nm technological node of CMOS and beyond).[2]

References

  1. ^ Despotuli, Andreeva and Rambaby (June 7, 2006). "Nanoionics of advanced superionic conductors" (portable document format abstract only). Ionics (Berlin/Heidelberg: Springer) 11 (3–4): 306–314. doi:10.1007/BF02430394. http://www.springerlink.com/index/31066631W60H12J0.pdf. Retrieved 2007-11-02. 
  2. ^ Александр Деспотули, Александра Андреева (2007). "Высокоёмкие конденсаторы для 0,5 вольтовой наноэлектроники будущего" (in Russian) (Portable Document Format). Современная Электроника (7): 24–29. http://www.nanometer.ru/2007/10/17/nanoionnie_superkondensatori_4879/PROP_FILE_files_1/Despotuli_Andreeva_Modern_Electronics_2007.pdf. Retrieved 2007-11-02.  Alexander Despotuli, Alexandra Andreeva (2007). "High-capacity capacitors for 0.5 voltage nanoelectronics of the future" (Portable Document Format). Modern Electronics (7): 24–29. http://www.nanometer.ru/2007/10/17/nanoionnie_superkondensatori_4879/PROP_FILE_files_2/Despotuli_Andreeva_Modern_Electronics_2007(ENG).pdf. Retrieved 2007-11-02. 

[3] Geller S. Crystal Structure of the Solid Electrolyte, RbAg4I5 // Science 1967. V. 157. no. 3786. P. 310 – 312.

[4] Geller S., Akridge J.R., Wilber S.A. Crystal structure and conductivity of the solid electrolyte α-RbCu4Cl3I2 // Phys. Rev. B 1979. V.19. P. 5396 – 5402.

[5] Hull S. Keen D.A., Sivia D.S., Berastegui P. Crystal Structures and Ionic Conductivities of Ternary Derivatives of the Silver and Copper Monohalides - I. Superionic Phases of Stoichiometry MAg4I5: RbAg4I5, KAg4I5, and KCu4I5 // J.Solid State Chemistry 2002. V. 165. P. 363-371.

[6] Despotuli A.L., Zagorodnev V.N., Lichkova N.V., Minenkova N.A. New high conductive CsAg4Br1-xI2+x (0.25 < x <1) solid electrolytes // Sov. Phys. Solid State 1989. V.31. P. 242-244.

[7] Lichkova N.V., Despotuli A.L., Zagorodnev V.N., Minenkova N.A., Shahlevich K.V. Ionic conductivity of solid electrolytes in the two- and three-components AgX –CsX (X = Cl, Br, I) glass-forming systems // Sov. Electrochem. 1989. V.25. P.1636-1640.

[8] Studenyak I.P., Kranjčec M., Bilanchuk V.V., Kokhan O.P, Orliukas A.F., Kezionis A., Kazakevicius E. , Salkus T. Temperature variation of electrical conductivity and absorption edge in Cu7GeSe5I advanced superionic conductor // Journal of Physics and Chemistry of Solids 2009. V.70. Issue 12. P.1478-1481.

[9] Funke K., Banhatti R.D., Wilmer D., Dinnebier R., Fitch A., Jansen M. Low-temperature phases of rubidium silver iodide: crystal structures and dynamics of the mobile silver ions // J. Phys. Chem. A 2006. V.110, P.3010-3016.

[10] Chang J.-H., Zurn A., Schnering H. G. Hyperbolic cation diffusion paths in alpha-RbAg4I5 type superionic conductors // Zeitschrift für Anorganische und Allgemeine Chemie 2008. V.634. Issue 12-13. P.2156 - 2160.

http://ruby.chemie.uni-freiburg.de/Vorlesung/Strukturtypen/sonstige_rbag4i5.html


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Fast ion conductor — Fast ion conductors, also known as solid electrolytes and superionic conductors, are solid state electrical conductors which conduct due to the movement of ions through voids (or empty crystallographic positions)in their crystal lattice. One… …   Wikipedia

  • Nanoionics — Part of a series of articles on Nanoelectronics Single molecule electronics …   Wikipedia

  • Memristor — Type Passive Working principle Memristance Invented Leon Chua (1971) First production HP Labs (2008) Electronic symbol …   Wikipedia

  • Nanoimprint lithography — is a method of fabricating nanometer scale patterns. It is a simple nanolithography process with low cost, high throughput and high resolution. It creates patterns by mechanical deformation of imprint resist and subsequent processes. The imprint… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”