Kepler triangle

Kepler triangle

A Kepler triangle is a right triangle with edge lengths in geometric progression. The ratio of the edges of a Kepler triangle are linked to the golden ratio

:varphi = {1 + sqrt{5} over 2}

and can be written: 1 : sqrtvarphi : varphi, or approximately 1 : 1.2720196 : 1.6180339. [cite book | title = The Shape of the Great Pyramid | author = Roger Herz-Fischler | publisher = Wilfrid Laurier University Press | year = 2000 | isbn = 0889203245 | url = http://books.google.com/books?id=066T3YLuhA0C&pg=PA81&dq=kepler-triangle+geometric&ei=ux77Ro6sGKjA7gLzrdjlDQ&sig=bngzcQrK9nHOkfZTo5O0ieNdtUs ]

Triangles with such ratios are named after the German mathematician and astronomer Johannes Kepler (15711630), who first demonstrated that this triangle is characterised by a ratio between short side and hypotenuse equal to the golden ratio.cite book|last=Livio|first=Mario|year=2002|title=The Golden Ratio: The Story of Phi, The World's Most Astonishing Number|publisher=Broadway Books|location=New York|id=ISBN 0-7679-0815-5|pages=149] Kepler triangles combine two key mathematical concepts—the Pythagorean theorem and the golden ratio—that fascinated Kepler deeply, as he expressed in this quotation:

Some sources claim that a triangle with dimensions closely approximating a Kepler triangle can be recognized in the Great Pyramid of Giza. [cite book | title = The Best of Astraea: 17 Articles on Science, History and Philosophy | url = http://books.google.com/books?id=LDTPvbXLxgQC&pg=PA93&dq=kepler-triangle&ei=vCH7RuG7O4H87gLJ56XlDQ&sig=6n43Hhu5pE3TN5BW18tbQJGRHTQ | publisher = Astrea Web Radio | isbn = 1425970400 | year = 2006 ] [ [http://www.dartmouth.edu/~matc/math5.geometry/unit2/unit2.html Squaring the circle, Paul Calter] ]

Derivation

The fact that a triangle with edges 1, sqrtvarphi and varphi, forms a right triangle follows directly from rewriting the defining quadratic polynomial for the golden ratio varphi:

:varphi^2 = varphi + 1

into Pythagorean form:

:(varphi)^2 = (sqrtvarphi)^2 + (1)^2.

Constructing a Kepler triangle

A Kepler triangle can be constructed with only straightedge and compass by first creating a golden rectangle:

# Construct a simple square
# Draw a line from the midpoint of one side of the square to an opposite corner
# Use that line as the radius to draw an arc that defines the height of the rectangle
# Complete the golden rectangle
# Use the longer side of the golden rectangle to draw an arc that intersects the opposite side of the rectangle and defines the longer rectangular edge of the Kepler triangle

Kepler constructed it differently. In a letter to his former professor Michael Mästlin, he wrote, "If on a line which is divided in extreme and mean ratio one constructs a right angled triangle, such that the right angle is on the perpendicular put at the section point, then the smaller leg will equal the larger segment of the divided line."

ee also

*Golden triangle

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Kepler–Poinsot polyhedron — In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra. They may be obtained by stellating the regular convex dodecahedron and icosahedron, and differ from these in having regular pentagrammic faces or vertex figures.… …   Wikipedia

  • Triangle — Pour les articles homonymes, voir Triangle (homonymie). Un triangle. En géométrie euclidienne, un trian …   Wikipédia en Français

  • Kepler-Bouwkamp constant — In plane geometry, Kepler Bouwkamp constantis obtained as a limit of the following sequence.Take a circle of radius 1. Inscribe a regular triangle in this circle. Inscribea circle in this triangle. Inscribe a square init. Inscribe a circle,… …   Wikipedia

  • Triángulo de Kepler — fig. tk1: El triángulo de Kepler es un triángulo rectángulo formado por tres cuadrados con áreas en progresión geométrica de acuerdo al número áureo. El triángulo de Kepler es un triángulo rectángulo con lados en progresión geométrica. La… …   Wikipedia Español

  • Johannes Kepler — Infobox Scientist name = Johannes Kepler |175px image width = 175px caption = A 1610 portrait of Johannes Kepler by an unknown artist birth date = Birth date|1571|12|27 birth place = Weil der Stadt near Stuttgart, Germany residence = Baden… …   Wikipedia

  • List of triangle topics — This list of triangle topics includes things related to the geometric shape, either abstractly, as in idealizations studied by geometers, or in triangular arrays such as Pascal s triangle or triangular matrices, or concretely in physical space.… …   Wikipedia

  • Golden triangle (mathematics) — A golden triangle is an isosceles triangle in which the two longer sides have equal lengths and in which the ratio of this length to that of the third, smaller side is the golden ratio:varphi = {1 + sqrt{5} over 2}.This is the shape of the… …   Wikipedia

  • Solide de Kepler-Poinsot — Les solides de Kepler Poinsot sont les polyèdres étoilés réguliers. Chacun possède des faces qui sont des polygones convexes réguliers congruents ou des polygones étoilés et possède le même nombre de faces se rencontrant à chaque sommet (comparer …   Wikipédia en Français

  • Solide de kepler-poinsot — Une face unique est colorée en jaune et entourée de rouge pour aider à identifier les faces. Les solides de Kepler Poinsot sont les polyèdres étoilés réguliers. Chacun possède des faces qui sont des polygones convexes réguliers congruents ou des… …   Wikipédia en Français

  • Équation de Kepler — En astronomie, l équation de Kepler est une formule liant l excentricité e et l anomalie excentrique E à l anomalie moyenne M. L importance de cette équation est qu elle permet de passer des paramètres dynamiques du mouvement d un astre (l… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”