- KdV hierarchy
In mathematics, the KdV hierarchy is an infinite sequence of
partial differential equation s which starts with theKorteweg–de Vries equation .Let T be translation operator defined on real valued functions as T(g)(x)=g(x+1). Let mathcal{C} be set of all
analytic function s that satisfy T(g)(x)=g(x), i.e.periodic function s of period 1. For each g in mathcal{C}, define an operatorL_g(psi)(x) = psi"(x) + g(x) psi(x)on the space ofsmooth function s on mathbb{R}. We define theBloch spectrum mathcal{B}_g to be the set of lambda,alpha) in mathbb{C} imesmathbb{C}^* so that there is a nonzero function psi with L_g(psi)=lambdapsi and T(psi)=alphapsi. The KdV hierarchy is a sequence of nonlinear differential operators D_i: mathcal{C} o mathcal{C} so that for any i we have an analytic function g(x,t) and we define g_t(x) to be g(x,t) andD_i(g_t)= frac{d}{dt} g_t ,then mathcal{B}_g is independent of t.External links
* [http://tosio.math.toronto.edu/wiki/index.php/KdV_hierarchy KdV hierarchy] at the Dispersive PDE Wiki.
Wikimedia Foundation. 2010.