Packing dimension

Packing dimension

In mathematics, the packing dimension is one of a number of concepts that can be used to define the dimension of a subset of a metric space. Packing dimension is in some sense dual to Hausdorff dimension, since packing dimension is constructed by "packing" small open balls inside the given subset, whereas Hausdorff dimension is constructed by covering the given subset by such small open balls.

Definitions

Let ("X", "d") be a metric space with a subset "S" ⊆ "X" and let "s" ≥ 0. The "s"-dimensional packing pre-measure of "S" is defined to be

:P_{0}^{s} (S) = lim_{delta downarrow 0} sup left{ left. sum_{i in I} mathrm{diam} (B_{i})^{s} ight| egin{matrix} { B_{i} }_{i in I} mbox{ is a countable collection} \ mbox{of pairwise disjoint balls with} \ mbox{diameters } leq delta mbox{ and centres in } S end{matrix} ight}.

Unfortunately, this is just a pre-measure and not a true measure on subsets of "X", as can be seen by considering dense, countable subsets. However, the pre-measure leads to a "bona fide" measure: the "s"-dimensional packing measure of "S" is defined to be

:P^{s} (S) = inf left{ left. sum_{j in J} P_{0}^{s} (S_{j}) ight| S subseteq igcup_{j in J} S_{j}, J mbox{ countable} ight},

i.e., the packing measure of "S" is the infimum of the packing pre-measures of countable covers of "S".

Having done this, the packing dimension dimP("S") of "S" is defined analogously to the Hausdorff dimension:

:egin{align}dim_{mathrm{P (S) &{} = sup { s geq 0 | P^{s} (S) = + infty } \&{} = inf { s geq 0 | P^{s} (S) = 0 }.end{align}

Generalizations

One can consider dimension functions more general than "diameter to the "s": for any function "h" : [0, +∞) → [0, +∞] , let the packing pre-measure of "S" with dimension function "h" be given by

:P_{0}^{h} (S) = lim_{delta downarrow 0} sup left{ left. sum_{i in I} h ig( mathrm{diam} (B_{i}) ig) ight| egin{matrix} { B_{i} }_{i in I} mbox{ is a countable collection} \ mbox{of pairwise disjoint balls with} \ mbox{diameters } leq delta mbox{ and centres in } S end{matrix} ight}

and define the packing measure of "S" with dimension function "h" by

:P^{h} (S) = inf left{ left. sum_{j in J} P_{0}^{h} (S_{j}) ight| S subseteq igcup_{j in J} S_{j}, J mbox{ countable} ight}.

The function "h" is said to be an exact (packing) dimension function for "S" if "P""h"("S") is both finite and strictly positive.

Properties

* If "S" is a subset of "n"-dimensional Euclidean space R"n" with its usual metric, then the packing dimension of "S" is equal to the upper modified box dimension of "S":

::dim_{mathrm{P (S) = overline{dim}_{mathrm{MB (S).

:This result is interesting because it shows how a dimension derived from a measure (packing dimension) agrees with one derived without using a measure (box dimension).

ee also

* Hausdorff dimension
* Minkowski-Bouligand dimension

References

* cite journal
last = Tricot, Jr.
first = Claude
title = Two definitions of fractional dimension
journal = Math. Proc. Cambridge Philos. Soc,
volume = 91
year = 1982
issue = 1
pages = 57–74
issn = 0305-0041
MathSciNet|id=633256


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Dimension function — In mathematics, the notion of an (exact) dimension function (also known as a gauge function) is a tool in the study of fractals and other subsets of metric spaces. Dimension functions are a generalisation of the simple diameter to the dimension… …   Wikipedia

  • Dimension (disambiguation) — A dimension is a spatial characteristic of an object; that is, length, width, or height. Dimension may also be: Contents 1 Science: 2 Mathematics: 3 Media: 4 Other …   Wikipedia

  • Dimension fractale — Mesure de la dimension fractale de la côte de Grande Bretagne En géométrie fractale, la dimension fractale, D, est une grandeur qui a vocation à traduire la façon qu a un ensemble fractal de remplir l espace, à toutes les échelles. Dans le cas… …   Wikipédia en Français

  • Minkowski-Bouligand dimension — In fractal geometry, the Minkowski Bouligand dimension, also known as Minkowski dimension or box counting dimension, is a way of determining the fractal dimension of a set S in a Euclidean space R^n, or more generally in a metric space ( X , d ) …   Wikipedia

  • Minkowski–Bouligand dimension — Estimating the box counting dimension of the coast of Great Britain In fractal geometry, the Minkowski–Bouligand dimension, also known as Minkowski dimension or box counting dimension, is a way of determining the fractal dimension of a set S in a …   Wikipedia

  • Sphere packing — In mathematics, sphere packing problems are problems concerning arrangements of non overlapping identical spheres which fill a space. Usually the space involved is three dimensional Euclidean space. However, sphere packing problems can be… …   Wikipedia

  • Hausdorff dimension — In mathematics, the Hausdorff dimension (also known as the Hausdorff–Besicovitch dimension) is an extended non negative real number associated to any metric space. The Hausdoff dimension generalizes the notion of the dimension of a real vector… …   Wikipedia

  • Fractal dimension — In fractal geometry, the fractal dimension, D , is a statistical quantity that gives an indication of how completely a fractal appears to fill space, as one zooms down to finer and finer scales. There are many specific definitions of fractal… …   Wikipedia

  • Bin packing problem — Problème de bin packing Le problème de bin packing relève de la recherche opérationnelle et de l optimisation combinatoire. Il s agit de trouver le rangement le plus économique possible pour un ensemble d articles dans des boîtes. Le problème… …   Wikipédia en Français

  • Probleme de bin packing — Problème de bin packing Le problème de bin packing relève de la recherche opérationnelle et de l optimisation combinatoire. Il s agit de trouver le rangement le plus économique possible pour un ensemble d articles dans des boîtes. Le problème… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”