Lehmer's conjecture

Lehmer's conjecture

Lehmer's conjecture, also known as the Lehmer Mahler measure problem, is a problem in number theory. Derrick Henry Lehmer conjectured that the Mahler measure of any integral polynomial

:"P"("x"),

that is not a multiple of cyclotomic polynomials, is bounded below.

More specifically

:M_1(P(x))geq M_1(x^{10}-x^9+x^7-x^6+x^5-x^4+x^3-x+1)=1.17dots,.

Essentially, to disprove this conjecture, one would try to find a polynomial

:P(x)=a_0 (x-alpha_1)(x-alpha_2)cdots(x-alpha_n)=a_0 x^n+a_1 x^{n-1}+cdots+a_n

with a_i in mathbb{Z} (each coefficient is an integer), such that

:a_0 prod_{i=1}^{n} max(1,|alpha_i|)

is minimized, and where P(x) is not divisible by

:x^m+x^{m-1}+cdots+x+1 ext{ for any }m>0.

This can also be stated in terms of the Mahler measure of an algebraic number, where the Mahler measure of an algebraic number is simply the Mahler measure of its minimal polynomial.

Some active research consists of computational techniques for searching through polynomials of some degree trying to find those with smallest Mahler measure.

External links

*http://www.cecm.sfu.ca/~mjm/Lehmer/ is a nice reference about the problem.
*MathWorld|urlname=LehmersMahlerMeasureProblem|title=Lehmer's Mahler Measure Problem


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Lehmer — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Lehmer: Derrick Henry Lehmer (1905 1991) Code de Lehmer Conjecture de Lehmer (en) Problème de Lehmer …   Wikipédia en Français

  • Conjecture d'Artin sur les racines primitives — Pour les articles homonymes, voir Conjecture d Artin sur les fonctions L. En mathématiques, la conjecture d Artin est une conjecture sur la densité des nombres premiers qui sont des racines primitives. En termes simplistes, la conjecture d Artin… …   Wikipédia en Français

  • Derrick Henry Lehmer — Born February 23, 1905(1905 02 23) Berkeley, California Died May 22, 1991(1991 05 22) (aged&# …   Wikipedia

  • Derrick Lehmer — Pour les articles homonymes, voir Lehmer. Derrick Henry Lehmer (23 février 1905 – 22 mai 1991) est un mathématicien américain, inventeur d un test de primalité. Il a aussi posé le problème qui porte son nom : si n ≡ 1 mod φ(n), n est il… …   Wikipédia en Français

  • Lucas–Lehmer test for Mersenne numbers — This article is about the Lucas–Lehmer test (LLT), that only applies to Mersenne numbers. There is also a Lucas Lehmer Riesel test for numbers of the form N=k 2^n 1, with 2^n > k, based on the LLT: see Lucas Lehmer Riesel test. There is also a… …   Wikipedia

  • List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… …   Wikipedia

  • Problèmes non résolus en mathématiques — Ce qui suit est une liste de problèmes non résolus en mathématiques. Sommaire 1 Problèmes du prix du millénaire 2 Autres problèmes encore non résolus 2.1 Théorie des nombres 2.2 …   Wikipédia en Français

  • Néron–Tate height — In number theory, the Néron–Tate height (or canonical height) is a quadratic form on the Mordell Weil group of rational points of an abelian variety defined over a global field. It is named after André Néron and John Tate. Contents 1 Definition… …   Wikipedia

  • List of unsolved problems in mathematics — This article lists some unsolved problems in mathematics. See individual articles for details and sources. Contents 1 Millennium Prize Problems 2 Other still unsolved problems 2.1 Additive number theory …   Wikipedia

  • Unsolved problems in mathematics — This article lists some unsolved problems in mathematics. See individual articles for details and sources. Millennium Prize Problems Of the seven Millennium Prize Problems set by the Clay Mathematics Institute, the six ones yet to be solved are:… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”