Heesch's problem

Heesch's problem

Heesch's problem, named for geometer Heinrich Heesch, concerns the number of layers of congruent copies of a geometric figure (usually a polygon) that can surround that figure. For instance, a square may be surrounded by infinitely many layers of congruent squares in the square tiling, while a circle cannot be surrounded by even a single layer of congruent circles without leaving some gaps. More complicated examples such as the one shown here can be surrounded by a nonzero number of layers, but not infinitely many. Geometers have constructed examples of polygons that may surround themselves for k layers but no more, for 0≤k≤5, but it is not known whether similar results are possibly for any k≥6.

Formal Definitions

A tessellation of the plane is a partition of the plane into smaller regions called tiles. The zeroth corona of a tile is defined as the tile itself, and for k>0 the kth corona is the set of tiles sharing any boundary point with the (k-1)st corona. The Heesch number of a figure S is the maximum value k such that there exists a tiling of the plane, and tile t within that tiling, for which that all tiles in the zeroth through kth coronas of t are congruent to S. In some work on this problem this definition is modified to additionally require that the union of the zeroth through kth coronas of t is simply connected.

If there is no limit on the number of layers by which a region may be surrounded, we say that its Heesch number is infinite. In this case, an argument based on König's lemma can be used to show that there exists a tessellation of the whole plane by copies of the polygon.

Example

For example, consider the polygon shown in the figure, an example discovered by Robert Amman and formed from a regular hexagon by adding projections on two of its sides and matching indentations on three sides. The figure shows a tessellation consisting of 61 copies of the polygon, one large infinite region, and four small diamond-shaped polygons. The first through fourth coronas of the central polygon consist entirely of congruent copies of that polygon, so it has Heesch number at least four. One cannot rearrange the copies of the polygon in this figure to avoid creating the small diamond shaped polygons, because the 61 copies of the polygon have too many indentations relative to the number of projections that could fill them; by formalizing this argument one can prove that the polygon in the figure has Heesch number exactly four. According to the modified definition with simply connected coronas, its Heesch number is instead three.

References

* cite web
author = Eppstein, David
authorlink = David Eppstein
title = The Geometry Junkyard: Heesch's Problem
url = http://www.ics.uci.edu/~eppstein/junkyard/heesch/
accessdate = 2006-09-05

* cite journal
author = Fontaine, Anne
title = An infinite number of plane figures with Heesch number two
journal = Journal of Combinatorial Theory Series A
volume = 57
issue = 1
pages = 151–156
date = 1991
doi = 10.1016/0097-3165(91)90013-7

* cite web
author = Friedman, Erich
title = Heesch Tiles with Surround Numbers 3 and 4
url = http://www.stetson.edu/~efriedma/papers/heesch/heesch.html
accessdate = 2006-09-05

* cite web
author = Mann, Casey
title = Heesch's Problem
url = http://math.uttyler.edu/cmann/math/heesch/heesch.htm
accessdate = 2006-09-05

* cite paper
author = Mann, Casey
title = On Heesch’s problem and other tiling problems
version = Ph.D. thesis
publisher = University of Arkansas
date = 2001

* cite web
author = Thomas, Mark
title = Self-surrounding tiles
url = http://home.flash.net/~markthom/html/self-surrounding_tiles.html
accessdate = 2006-09-05

* cite web
author = Weisstein, Eric W
authorlink = Eric W. Weisstein
title = Heesch Number
publisher = MathWorld–A Wolfram Web Resource
url = http://mathworld.wolfram.com/HeeschNumber.html
accessdate = 2006-09-05


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Heesch — can refer to: * Heesch (Netherlands) a town in the Netherlands in Bernheze mun.; * Heinrich Heesch, a mathematician; * Heesch s problem in mathematics …   Wikipedia

  • Heinrich Heesch — (1930) Heinrich Heesch (* 25. Juni 1906 in Kiel; † 26. Juli 1995 in Hannover) war ein deutscher Mathematiker, der sich mit Geometrie beschäftigte. Inhaltsverzeichnis …   Deutsch Wikipedia

  • 4-Farben-Problem — Der Vier Farben Satz (früher auch als Vier Farben Vermutung oder Vier Farben Problem bekannt) ist ein mathematischer Satz und besagt, dass vier Farben immer ausreichen, um eine beliebige Landkarte in der euklidischen Ebene so einzufärben, dass… …   Deutsch Wikipedia

  • Vier-Farben-Problem — Der Vier Farben Satz (früher auch als Vier Farben Vermutung oder Vier Farben Problem bekannt) ist ein mathematischer Satz und besagt, dass vier Farben immer ausreichen, um eine beliebige Landkarte in der euklidischen Ebene so einzufärben, dass… …   Deutsch Wikipedia

  • Hilbert's eighteenth problem — is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It asks three separate questions. Symmetry groups in n dimensions The first part of the problem asks whether there are only finitely many… …   Wikipedia

  • List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… …   Wikipedia

  • Anisohedral tiling — In geometry, a shape is said to be anisohedral if it admits a tiling, but no such tiling is isohedral (tile transitive); that is, in any tiling by that shape there are two tiles that are not equivalent under any symmetry of the tiling. A tiling… …   Wikipedia

  • 4-Farben-Satz — Der Vier Farben Satz (früher auch als Vier Farben Vermutung oder Vier Farben Problem bekannt) ist ein mathematischer Satz und besagt, dass vier Farben immer ausreichen, um eine beliebige Landkarte in der euklidischen Ebene so einzufärben, dass… …   Deutsch Wikipedia

  • Landkartenfärbungsproblem — Der Vier Farben Satz (früher auch als Vier Farben Vermutung oder Vier Farben Problem bekannt) ist ein mathematischer Satz und besagt, dass vier Farben immer ausreichen, um eine beliebige Landkarte in der euklidischen Ebene so einzufärben, dass… …   Deutsch Wikipedia

  • Vier-Farben-Theorem — Der Vier Farben Satz (früher auch als Vier Farben Vermutung oder Vier Farben Problem bekannt) ist ein mathematischer Satz und besagt, dass vier Farben immer ausreichen, um eine beliebige Landkarte in der euklidischen Ebene so einzufärben, dass… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”