Totally bounded space

Totally bounded space

In topology and related branches of mathematics, a totally bounded space is a space that can be covered by finitely many subsets of any fixed "size" (where the meaning of "size" depends on the given context). The smaller the size fixed, the more subsets may be needed, but any specific size should require only finitely many subsets. A related notion is a totally bounded set, in which only a subset of the space needs to be covered. Every subset of a totally bounded space is a totally bounded set; but even if a space is not totally bounded, still some of its subsets will be. The term precompact (or pre-compact) is also used with the same meaning; but this terms is also used to mean relatively bounded (which is equivalent in a complete metric space); see also #Use of the axiom of choice below.

Definitions

The general logical form of the definition is: A subset S of a space X is a totally bounded set if and only if, given any size E, there exist a natural number n and a family A1, A2, ..., An of subsets of X, such that S is contained in the union of the family (in other words, the family is a "finite cover" of S), and such that each set Ai in the family is of size E (or less). In mathematical symbols:: forall_{E}; exists_{n in mathbb{N; exists_{ A_{1}, A_{2}, ldots, A_{n} subseteq X}left ( S subseteq igcup_{i=1}^{n} A_{i} ; mbox{ and }; forall_{i = 1, ldots, n}; mathrm{size}(A_{i}) leq E ight ). ! The space X is a totally bounded space if and only if it is a totally bounded set when considered as a subset of itself.(One can also define totally bounded spaces directly, and then define a set to be totally bounded if and only if it is totally bounded when considered as a subspace.)

The terms "space" and "size" here are vague, and they may be made precise in various ways:

A subset S of a metric space X is totally bounded if and only if, given any positive real number E, there exists a finite cover of S by subsets of X whose diameters are all less than E. (In other words, a "size" here is a positive real number, and a subset is of size E if its diameter is less than E.) Equivalently, S is totally bounded if and only if, given any E as before, there exist elements a1, a2, ..., an of X such that S is contained in the union of the n open balls of radius E around the points ai.

A subset S of a topological vector space, or more generally topological abelian group, X is totally bounded if and only if, given any neighbourhood E of the identity (zero) element of X, there exists a finite cover of S by subsets of X each of which is a translate of a subset of E. (In other words, a "size" here is a neighbourhood of the identity element, and a subset is of size E if it is translate of a subset of E.) Equivalently, S is totally bounded if and only if, given any E as before, there exist elements a1, a2, ..., an of X such that S is contained in the union of the n translates of E by the points ai.

A topological group X is "left"-totally bounded if and only if it satisfies the definition for topological abelian groups above, using "left" translates. That is, use aiE in place of E + ai. Alternatively, X is "right"-totally bounded if and only if it satisfies the definition for topological abelian groups above, using "right" translates. That is, use Eai in place of E + ai. (In other words, a "size" here is unambiguously a neighbourhood of the identity element, but there are two notions of "whether" a set is of a given size: a left notion based on left translation and a right notion based on right translation.)

Generalising the above definitions, a subset S of a uniform space X is totally bounded if and only if, given any entourage E in X, there exists a finite cover of S by subsets of X each of whose Cartesian squares is a subset of E. (In other words, a "size" here is an entourage, and a subset is of size E if its Cartesian square is a subset of E.) Equivalently, S is totally bounded if and only if, given any E as before, there exist subsets A1, A2, ..., An of X such S is contained in the union of the Ai and, whenever the elements x and y of X both belong to the same set Ai, then (x,y) belongs to E (so that x and y are close as measured by E).

The definition can be extended still further, to any category of spaces with a notion of compactness and Cauchy completion: a space is totally bounded if and only if its completion is compact.

Examples and nonexamples

* A subset of the real line, or more generally of (finite-dimensional) Euclidean space, is totally bounded if and only if it is bounded.
* The unit ball in a Hilbert space, or more generally in a Banach space, is totally bounded if and only if the space has finite dimension.
* Every compact set is totally bounded, whenever the concept is defined.
* Every totally bounded metric space is bounded. However not every bounded metric space is totally bounded.
* A subset of a complete metric space is totally bounded if and only if it is relatively compact (meaning that its closure is compact).
* In a locally convex space endowed with the weak topology the precompact sets are exactly the bounded sets.
* A metric space is separable if and only if it is homeomorphic to a totally bounded metric space.
* An infinite metric space with the discrete metric (the distance between any two distinct points is 1) is "not" totally bounded, even though it is bounded.

Relationships with compactness and completeness

There is a nice relationship between total boundedness and compactness: A uniform space is compact if and only if it is both totally bounded and Cauchy complete. This can be seen as a generalisation of the Heine-Borel theorem from Euclidean spaces to arbitrary spaces: we must replace boundedness with total boundedness (and also replace closedness with completeness).

There is a complementary relationship between total boundedness and the process of Cauchy completion: A uniform space is totally bounded if and only if its Cauchy completion is totally bounded. (This corresponds to the fact that, in Euclidean spaces, a set is bounded if and only if its closure is bounded.)

Combining these theorems, a uniform space is totally bounded if and only if its completion is compact. This may be taken as an alternative definition of total boundedness. Alternatively, this may be taken as a definition of "precompactness", while still using a separate definition of total boundedness. Then it becomes a theorem that a space is totally bounded if and only if it is precompact. (Separating the definitions in this way is useful in the absence of the axiom of choice; see the next section.)

Use of the axiom of choice

The properties of total boundedness mentioned above rely in part on the axiom of choice. In the absence of the axiom of choice, total boundedness and precompactness must be distinguished. That is, we define total boundedness in elementary terms but define precompactness in terms of compactness and Cauchy completion. It remains true (that is, the proof does not require choice) that every precompact space is totally bounded; in other words, if the completion of a space is compact, then that space is totally bounded. But it is no longer true (that is, the proof requires choice) that every totally bounded space is precompact; in other words, the completion of a totally bounded space might not be compact in the absence of choice.

References

*cite book | author=Willard, Stephen | title=General Topology | publisher=Dover Publications | year=2004 | id=ISBN 0-486-43479-6


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Bounded set — In mathematical analysis and related areas of mathematics, a set is called bounded, if it is, in a certain sense, of finite size. Conversely a set which is not bounded is called unbounded. Definition A set S of real numbers is called bounded from …   Wikipedia

  • Bounded set (topological vector space) — In functional analysis and related areas of mathematics, a set in a topological vector space is called bounded or von Neumann bounded, if every neighborhood of the zero vector can be inflated to include the set. Conversely a set which is not… …   Wikipedia

  • Metric space — In mathematics, a metric space is a set where a notion of distance (called a metric) between elements of the set is defined. The metric space which most closely corresponds to our intuitive understanding of space is the 3 dimensional Euclidean… …   Wikipedia

  • Compact space — Compactness redirects here. For the concept in first order logic, see compactness theorem. In mathematics, specifically general topology and metric topology, a compact space is an abstract mathematical space whose topology has the compactness… …   Wikipedia

  • Discrete space — In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points are isolated from each other in a certain sense. Contents 1 Definitions 2 Properties 3 Uses …   Wikipedia

  • Complete metric space — Cauchy completion redirects here. For the use in category theory, see Karoubi envelope. In mathematical analysis, a metric space M is called complete (or Cauchy) if every Cauchy sequence of points in M has a limit that is also in M or,… …   Wikipedia

  • Connected space — For other uses, see Connection (disambiguation). Connected and disconnected subspaces of R² The green space A at top is simply connected whereas the blue space B below is not connected …   Wikipedia

  • Metric space aimed at its subspace — In mathematics, a metric space aimed at its subspace is a categorical construction that has a direct geometric meaning. It is also a useful step toward the construction of the metric envelope, or tight span, which are basic (injective) objects of …   Wikipedia

  • Tychonoff space — Separation Axioms in Topological Spaces Kolmogorov (T0) version T0 | T1 | T2 | T2½ | completely T2 T3 | T3½ | T4 | T5 | T6 In topology and related branches of mathematic …   Wikipedia

  • List of mathematics articles (T) — NOTOC T T duality T group T group (mathematics) T integration T norm T norm fuzzy logics T schema T square (fractal) T symmetry T table T theory T.C. Mits T1 space Table of bases Table of Clebsch Gordan coefficients Table of divisors Table of Lie …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”