Tennenbaum's theorem

Tennenbaum's theorem

Tennenbaum's theorem, named for Stanley Tennenbaum who presented the theorem in 1959, is a result in mathematical logic that states that no countable nonstandard model of Peano arithmetic (PA) can be recursive.

Recursive structures for PA

A structure scriptstyle M in the language of PA is recursive if there are recursive functions + and &times; from scriptstyle N imes N to scriptstyle N a recursive two-place relation < on scriptstyle N, and distinguished constants scriptstyle n_0,n_1 such that

: (N,+, imes,<,n_{0},n_{1}) equiv M, ,

where scriptstyle equiv indicates isomorphism and scriptstyle N is the set of (standard) natural numbers. Because the isomorphism must be a bijection, every recursive model is countable. There are many nonisomorphic countable nonstandard models of PA.

tatement of the theorem

Tennenbaum's theorem states that no countable nonstandard model of PA is recursive. Moreover, neither the addition nor the multiplication of such a model can be recursive.

Proof

References

* Boolos, George; Burgess, John P. and Jeffrey, Richard. 2002. Computability and Logic, Fourth Edition. Cambridge: Cambridge University Press. ISBN 0-521-00758-5
* Richard Kaye (1991). Models of Peano arithmetic. Oxford University Press. ISBN 0-19-853213-X.

External links

* "Tennenbaum's Theorem for Models of Arithmetic" by R. W. Kaye [http://web.mat.bham.ac.uk/R.W.Kaye/papers/tennenbaum/tennenbaum]


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Non-standard model of arithmetic — In mathematical logic, a nonstandard model of arithmetic is a model of (first order) Peano arithmetic that contains nonstandard numbers. The standard model of arithmetic consists of the set of standard natural numbers {0, 1, 2, …}. The elements… …   Wikipedia

  • List of mathematics articles (T) — NOTOC T T duality T group T group (mathematics) T integration T norm T norm fuzzy logics T schema T square (fractal) T symmetry T table T theory T.C. Mits T1 space Table of bases Table of Clebsch Gordan coefficients Table of divisors Table of Lie …   Wikipedia

  • Peano axioms — In mathematical logic, the Peano axioms, also known as the Dedekind Peano axioms or the Peano postulates, are a set of axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used… …   Wikipedia

  • Non-standard arithmetic — In mathematical logic, a nonstandard model of arithmetic is a model of (first order) Peano arithmetic that contains nonstandard numbers. The standard model of arithmetic consists of the set of standard natural numbers {0, 1, 2, hellip;}. The… …   Wikipedia

  • Oscar Zariski — (1899–1986) Born April 24, 1899(1 …   Wikipedia

  • Michail Jakowlewitsch Suslin — (russisch Михаил Яковлевич Суслин; * 3. Novemberjul./ 15. November 1894greg. in Krassawka bei Saratow; † 21. Oktober 1919 in Moskau) war ein russischer Mathematiker, der wichtige Beiträge zur Maßtheorie und deskriptiven… …   Deutsch Wikipedia

  • Robert M. Solovay — Robert Martin Solovay (* 1938 in Brooklyn) ist ein US amerikanischer Mathematiker, der sich mit axiomatischer Mengenlehre beschäftigt. Robert M. Solovay Solovay promovierte 1964 an der University of Chicago bei Saunders MacLane (A Functorial Form …   Deutsch Wikipedia

  • George Zames — Infobox Scientist name = George Zames caption = birth date = birth date |1934|1|7 birth place = Łódź, Poland death date = death date and age|1997|8|10|1934|1|7 death place = Montreal, Canada residence = Canada nationality =Canadian Polish field …   Wikipedia

  • Peano-Arithmetik — Die Peano Arithmetik (erster Stufe) ist eine Theorie der Arithmetik, also der Natürlichen Zahlen, innerhalb der Prädikatenlogik erster Stufe. Als Axiome werden die Peano Axiome verwendet, wobei das Induktionsaxiom durch ein Axiomenschema ersetzt… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”