Forcing (recursion theory)
- Forcing (recursion theory)
Forcing in recursion theory is a modification of Paul Cohen's original set theoretic technique of forcing to deal with the effective concerns in recursion theory. Conceptually the two techniques are quite similar, in both one attempts to build generic objects (intuitively objects that are somehow 'typical') by meeting dense sets. Also both techniques are elegantly described as a relation (customarily denoted ) between 'conditions' and sentences. However, where set theoretic forcing is usually interested in creating objects that meet every dense set of conditions in the ground model, recursion theoretic forcing only aims to meet dense sets that are arithmetically or hyperarithmetically definable. Therefore some of the more difficult machinery used in set theoretic forcing can be eliminated or substantially simplified when defining forcing in recursion theory. But while the machinery may be somewhat different recursion theoretic and set theoretic forcing are properly regarded as an application of the same technique to different classes of formulas.
Terminology
In this article we use the following terminology.
;real: an element of . In other words a function that maps each integer to either 0 or 1. ;string: an element of
Wikimedia Foundation.
2010.
Look at other dictionaries:
Forcing — may refer to: *Forcing (set theory), a technique for obtaining proofs in set theory *Forcing (recursion theory) *Radiative forcing, the difference between the incoming radiation energy and the outgoing radiation energy in a given climate system… … Wikipedia
Forcing (mathematics) — For the use of forcing in recursion theory, see Forcing (recursion theory). In the mathematical discipline of set theory, forcing is a technique invented by Paul Cohen for proving consistency and independence results. It was first used, in 1963,… … Wikipedia
Set theory — This article is about the branch of mathematics. For musical set theory, see Set theory (music). A Venn diagram illustrating the intersection of two sets. Set theory is the branch of mathematics that studies sets, which are collections of objects … Wikipedia
Model theory — This article is about the mathematical discipline. For the informal notion in other parts of mathematics and science, see Mathematical model. In mathematics, model theory is the study of (classes of) mathematical structures (e.g. groups, fields,… … Wikipedia
List of set theory topics — Logic portal Set theory portal … Wikipedia
Sequence theory — is the study of conceptual sequences, representing unfolding steps of a sequence like a recipe or an algorithm. A successful sequence is one which is backtrack free.HistorySequence theory is related to various fields within mathematics and… … Wikipedia
Outline of logic — The following outline is provided as an overview of and topical guide to logic: Logic – formal science of using reason, considered a branch of both philosophy and mathematics. Logic investigates and classifies the structure of statements and… … Wikipedia
List of mathematics articles (F) — NOTOC F F₄ F algebra F coalgebra F distribution F divergence Fσ set F space F test F theory F. and M. Riesz theorem F1 Score Faà di Bruno s formula Face (geometry) Face configuration Face diagonal Facet (mathematics) Facetting… … Wikipedia
Mathematical logic — (also known as symbolic logic) is a subfield of mathematics with close connections to foundations of mathematics, theoretical computer science and philosophical logic.[1] The field includes both the mathematical study of logic and the… … Wikipedia
List of mathematical logic topics — Clicking on related changes shows a list of most recent edits of articles to which this page links. This page links to itself in order that recent changes to this page will also be included in related changes. This is a list of mathematical logic … Wikipedia