Riemann-Lebesgue lemma

Riemann-Lebesgue lemma

In mathematics, the Riemann-Lebesgue lemma (one of its special cases is also called Mercer's theorem), is of importance in harmonic analysis and asymptotic analysis. It is named after Bernhard Riemann and Henri Lebesgue.

The lemma says that the Fourier or Laplace transform of an "L"1 function vanishes at infinity.

Intuitively, the lemma says that if a function oscillates rapidly around zero, then the integral of this function will be small. The integral will approach zero as the number of oscillations increases.

Definition

Let "f":R → C be a measurable function. If "f" is L1 integrable, that is to say if the Lebesgue integral of |"f"| is finite, then

:int^{infty}_{-infty} f(x) e^{izx},dx ightarrow 0 as quad z ightarrow pminfty.

This says that the Fourier transform of "f" tends to 0 as "z" tends to infinity.In fact, the same holds for the Laplace transform of "f" if "f" is supported on (0,infty),i.e., the above holds as |z| ightarrow +infty, ext{im},zge0 if f(x)=0 (xle0).

If, instead, "f" is a periodic, integrable function, then we can conclude that the Fourier coefficients of "f" tend to 0 as "n" → ± ∞ ,

:hat{f}_n o 0 .

(Indeed: extend "f" on the entire real axis by defining it to be zero outside a single period [0,T] ).

Applications

The Riemann-Lebesgue lemma can be used to prove the validity of asymptotic approximations for integrals. Rigorous treatments of the method of steepest descent and the method of stationary phase, amongst others, are based on the Riemann-Lebesgue lemma.

Proof

The proof of the last special case can be organized into 3 steps; the 4th step extends the result to the first special case.

"Step 1". An elementary calculation shows that

:int_I e^{itx},dx ightarrow 0 as quad t ightarrow pminfty

for every interval "I" ⊂ ["a", "b"] . The proposition is therefore true for all step functions with support in ["a", "b"] .

"Step 2". By the monotone convergence theorem, the proposition is true for all positive functions, integrable on ["a", "b"] .

"Step 3". Let "f" be an arbitrary measurable function, integrable on ["a", "b"] . The proposition is true for such a general "f", because one can always write "f" = "g" − "h" where "g" and "h" are positive functions, integrable on ["a", "b"] .

"Step 4". Because functions with finite support are dense in L1(R),this special case extends to the general result if we require "z" to be real.

"The case of non-real z".Assume first that "f" has a compact support on (0,infty) and that "f" is continuously differentiable.Denote the Fourier/Laplace transforms of "f" and f' by "F" and "G", respectively.Then F(z)=G(z)/z, hence F(z) ightarrow 0 as |z| ightarrowinfty.Because the functions of this form are dense in L^1(0,infty), the same holds for every "f".

References

*cite book | author =Bochner S.,Chandrasekharan K. | title=Fourier Transforms | publisher= Princeton University Press | year=1949
*


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Henri Lebesgue — Infobox Scientist name =Henri Lebesgue box width =26em image width =225px caption = birth date =1875 06 28 birth place =Beauvais, France death date =death date and age|1941|7|26|1875|6|28 death place =Paris, France residence = citizenship =… …   Wikipedia

  • Bernhard Riemann — Infobox Scientist name =Bernhard Riemann box width =300px image width =225px caption =Bernhard Riemann, 1863 birth date =September 17, 1826 birth place =Breselenz, Germany death date =death date and age|1866|7|20|1826|9|17 death place =Selasca,… …   Wikipedia

  • Georg Friedrich Bernhard Riemann — Bernhard Riemann Georg Friedrich Bernhard Riemann (* 17. September 1826 in Breselenz bei Dannenberg (Elbe); † 20. Juli 1866 in Selasca bei Verbania am Lago Maggiore) war ein deutscher Mathem …   Deutsch Wikipedia

  • Bernhard Riemann — 1863 Georg Friedrich Bernhard Riemann (* 17. September 1826 in Breselenz bei Dannenberg (Elbe); † 20. Juli 1866 in Selasca bei Verbania am Lago Maggiore) war ein deutscher Mathematiker, der …   Deutsch Wikipedia

  • Lebesgue-integrierbar — Das Lebesgue Integral (nach Henri Léon Lebesgue) ist der Integralbegriff der modernen Mathematik, der die Berechnung von Integralen in beliebigen Maßräumen ermöglicht. Im Fall der reellen Zahlen mit dem Lebesgue Maß stellt das Lebesgue Integral… …   Deutsch Wikipedia

  • Lebesgue integration — In mathematics, the integral of a non negative function can be regarded in the simplest case as the area between the graph of that function and the x axis. Lebesgue integration is a mathematical construction that extends the integral to a larger… …   Wikipedia

  • Lebesgue-Integral — Illustration der Grenzwertbildung beim Riemann Integral (blau) und beim Lebesgue Integral (rot) Das Lebesgue Integral (nach Henri Léon Lebesgue) ist der Integralbegriff der modernen Mathematik, der die Berechnung von Integralen in beliebigen… …   Deutsch Wikipedia

  • Lebesgue differentiation theorem — In mathematics, the Lebesgue differentiation theorem is a theorem of real analysis.tatementFor a Lebesgue integrable real valued function f, the indefinite integral is a set function which maps a measurable set A to the Lebesgue integral of f… …   Wikipedia

  • Borel-Cantelli lemma — In probability theory, the Borel Cantelli lemma is a theorem about sequences of events. In a slightly more general form, it is also a result in measure theory. It is named after Émile Borel and Francesco Paolo Cantelli.Let ( E n ) be a sequence… …   Wikipedia

  • Fourier transform — Fourier transforms Continuous Fourier transform Fourier series Discrete Fourier transform Discrete time Fourier transform Related transforms The Fourier transform is a mathematical operation that decomposes a function into its constituent… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”