Hankel transform

Hankel transform

:"Besides the meaning discussed in this article, the "Hankel transform" may also refer to the determinant of the Hankel matrix of a sequence".

In mathematics, the Hankel transform of order ν of a function "f"("r") is given by:

:F_ u(k) = int_0^infty f(r)J_ u(kr),r,dr

where "J"ν is the Bessel function of the first kind of order ν with ν ≥ −1/2. The inverse Hankel transform of "F"ν("k") is defined as:

:f(r) =int_0^infty F_ u(k)J_ u(kr) k~dk

which can be readily verified using the orthogonality relationship described below.The Hankel transform is an integral transform and was first developed by the mathematician Hermann Hankel. It is also known as the Fourier–Bessel transform. Just as the continuous Fourier transform for an infinite interval is related to the Fourier series over a finite interval, so the Hankel transform over an infinite interval is related to the Fourier–Bessel series over a finite interval.

Domain of definition

The Hankel transform of a function "f"("r") is valid at every point at which"f"("r") is continuous provided that the function is defined in (0, ∞), is piecewise continuous and of bounded variation in every finite subinterval in (0, ∞), and the integral

:int_0^infty |f(r)|,r^{1/2},dr

is finite. However, like the Fourier Transform, the domain can be extended by a density argument to include some functions whose above integral is not finite, for example f(r) = r; this extension will not be discussed in this article.

Orthogonality

The Bessel functions form an orthogonal basis with respectto the weighting factor "r":

:int_0^infty J_ u(kr)J_ u(k'r)r~dr = frac{delta (k-k')}{k}

for "k" and "k"' greater than zero.

The Plancherel theorem and Parseval's theorem

If "f"("r") and "g"("r") are such that their Hankel transforms "F"ν("k") and "G"ν("k") arewell defined, then the Plancherel theorem states

:int_0^infty f(r)g(r)r~dr = int_0^infty F_ u(k)G_ u(k) k~dk.

Parseval's theorem is a special case of the Plancherel theorem which states:

:int_0^infty |f(r)|^2r~dr = int_0^infty |F_ u(k)|^2 k~dk.

These theorems can be proven using the orthogonality property.

Relation to other functions

Relation to the Fourier transform

The Hankel transform of order zero is essentially the two dimensional
continuous Fourier transform of a circularly symmetric function.

Consider a two-dimensional function "f"(r) of the radius vector r.Its Fourier transform is:

:F(mathbf{k})=frac{1}{2pi}iint f(mathbf{r})e^{-imathbf{k}cdotmathbf{r,dmathbf{r}.

With no loss of generality, we can pick a polar coordinate system ("r", θ) suchthat the k vector lies on the θ = 0 axis. The Fourier transform is now written in these polar coordinates as:

:F(mathbf{k})=frac{1}{2pi}int_{r=0}^inftyint_{ heta=0}^{2pi}f(r, heta)e^{-ikrcos( heta)},r,dr,d heta

where θ is the angle between the k and r vectors. If thefunction f happens to be circularly symmetric, it will have no dependence onthe angular variable θ and may be written "f"("r"). The integration over θ may be carried out, and the Fourier transform is now written:

:F(mathbf{k})=F(k)= int_0^infty f(r) J_0(kr) r,dr

which is just the zero-order Hankel transform of "f"("r").

Relation to the Fourier and Abel transforms

The Hankel transform is one member of the FHA cycle of integral operators. In two dimensions, if we define A as the Abel transform operator, F as the Fourier transform operator and H as the zeroth order Hankel transform operator, then the special case of the projection-slice theorem for circularly symmetric functions states that:

:FA=H.,

In other words, applying the Abel transform to a 1-dimensional function andthen applying the Fourier transform to that result is the same as applyingthe Hankel transform to that function. This concept can be extended to higherdimensions.

Some Hankel transform pairs

{pi kK_{-1/2}(k|z|),
-
frac{1}{r^2+z^2},
K_0(k|z|),
-
e^{iar}/r,
i/sqrt{ a^2 - k^2} quad (a>0, k
-
,
1/sqrt{ k^2 - a^2} quad (a>0, k>a) ,
-
e^{a^2r^2/2},
frac{e^{k^2/2a^2{a^2}
-
-r^2 f(r),
frac{d^2 F_0}{dk^2}+frac{1}{k}frac{d F_0}{dk}K_n(z) is a modified Bessel function of the second kind.The expressionfrac{d^2 F_0}{dk^2}+frac{1}{k}frac{d F_0}{dk}coincides with the expressionfor the Laplace operator in polar coordinates(k, heta)applied to a spherically symmetric function F_0(k).

ee also

* Continuous Fourier transform

* Discrete Hankel transform

References

* Gaskill, Jack D., "Linear Systems, Fourier Transforms, and Optics", John Wiley & Sons, New York, 1978. ISBN 0-471-29288-5
* Polyanin, A. D. and Manzhirov, A. V., "Handbook of Integral Equations", CRC Press, Boca Raton, 1998. ISBN 0-8493-2876-4
*


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Hankel matrix — In linear algebra, a Hankel matrix, named after Hermann Hankel, is a square matrix with constant (positive sloping) skew diagonals, e.g.::egin{bmatrix}a b c d e b c d e f c d e f g d e f g h e f g h i end{bmatrix}.In mathematical terms::a {i,j} …   Wikipedia

  • Hankel-Transformation — Die Hankel Transformation ist in der Funktionalanalysis, einem Teilgebiet der Mathematik, eine lineare Integraltransformation, welche im Kern auf den Bessel Funktionen erster Gattung basiert. Sie ist benannt nach dem Mathematiker Hermann Hankel.… …   Deutsch Wikipedia

  • Transform theory — In mathematics, transform theory is the study of transforms. The essence of transform theory is that by a suitable choice of basis for a vector space a problem may be simplified mdash; or diagonalized as in spectral theory.pectral theoryIn… …   Wikipedia

  • Abel transform — In mathematics, the Abel transform, named for Niels Henrik Abel, is an integral transform often used in the analysis of spherically symmetric or axially symmetric functions. The Abel transform of a function f ( r ) is given by::F(y)=2int y^infty… …   Wikipedia

  • Binomial transform — In combinatorial mathematics the binomial transform is a sequence transformation (ie, a transform of a sequence) that computes its forward differences. It is closely related to the Euler transform, which is the result of applying the binomial… …   Wikipedia

  • Matrice de Hankel — En algèbre linéaire une matrice de Hankel, du nom du mathématicien Hermann Hankel, est une matrice carrée dont les valeurs sont constantes le long des diagonales ascendantes, c est à dire dont les indices vérifient la relation ai,j = ai − 1,j + 1 …   Wikipédia en Français

  • Matrice De Hankel — En algèbre linéaire une matrice de Hankel, du nom du mathématicien Hermann Hankel, est une matrice carrée dont les valeurs sont constantes le long des diagonales ascendantes, c est à dire dont les indices vérifient la relation ai,j = ai − 1,j + 1 …   Wikipédia en Français

  • Matrice de hankel — En algèbre linéaire une matrice de Hankel, du nom du mathématicien Hermann Hankel, est une matrice carrée dont les valeurs sont constantes le long des diagonales ascendantes, c est à dire dont les indices vérifient la relation ai,j = ai − 1,j + 1 …   Wikipédia en Français

  • Hermann Hankel — (February 14, 1839 August 29, 1873) was a German mathematician who was born in Halle, Germany and died in Schramberg (near Tübingen), Germany.He studied and worked with, among others, Möbius, Riemann, Weierstrass and Kronecker.Herman Hankel is… …   Wikipedia

  • Fourier transform — Fourier transforms Continuous Fourier transform Fourier series Discrete Fourier transform Discrete time Fourier transform Related transforms The Fourier transform is a mathematical operation that decomposes a function into its constituent… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”