Voigt notation

Voigt notation

In mathematics, Voigt notation or Voigt form in multilinear algebra is a way to represent a symmetric tensor by reducing its order. There are a few variants and associated names for this idea: Mandel notation, Mandel–Voigt notation and Nye notation are others found. Kelvin notation is a revival by Helbig (1994) of old ideas of Lord Kelvin. The differences here lie in certain weights attached to the selected entries of the tensor. Nomenclature may vary according to what is traditional in the field of application.

For example, a 2×2 symmetric tensor X has only three distinct elements, the two on the diagonal and the other being off-diagonal. Thus it can be expressed as the vector

\langle x_{1 1}, x_{2 2}, x_{1 2}\rangle.

As another example:

The stress tensor (in matrix notation) is given as

\boldsymbol{\sigma}=
\left[{\begin{matrix}
  \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\
  \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\
  \sigma_{zx} & \sigma_{zy} & \sigma_{zz}
\end{matrix}}\right]

In Voigt notation it is simplified to a 6-dimensional vector:

\tilde\sigma= (\sigma_{xx}, \sigma_{yy}, \sigma_{zz},
  \sigma_{yz},\sigma_{xz},\sigma_{xy}) \equiv (\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6).

The strain tensor, similar in nature to the stress tensor -- both are symmetric second-order tensors --, is given in matrix form as

\boldsymbol{\epsilon}=
\left[{\begin{matrix}
  \epsilon_{xx} & \epsilon_{xy} & \epsilon_{xz} \\
  \epsilon_{yx} & \epsilon_{yy} & \epsilon_{yz} \\
  \epsilon_{zx} & \epsilon_{zy} & \epsilon_{zz}
\end{matrix}}\right]

Its representation in Voigt notation is

\tilde\epsilon= (\epsilon_{xx}, \epsilon_{yy}, \epsilon_{zz},
  2\epsilon_{yz},2\epsilon_{xz},2\epsilon_{xy}) \equiv (\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4, \epsilon_5, \epsilon_6),

where \gamma_{xy}=2\epsilon_{xy}, \gamma_{yz}=2\epsilon_{yz}, and \gamma_{zx}=2\epsilon_{zx} are engineering shear strains.

The benefit of using different representations for stress and strain is that the scalar invariance

 \boldsymbol{\sigma} : \boldsymbol{\epsilon} = \sigma_{ij}\epsilon_{ij} = \tilde\sigma \cdot \tilde\epsilon

is preserved.

Likewise, a three-dimensional symmetric fourth-order tensor can be reduced to a 6×6 matrix.

Mandel notation

For a symmetric tensor of second rank

 \boldsymbol{\sigma}=
\left[{\begin{matrix}
  \sigma_{11} & \sigma_{12} & \sigma_{13} \\
  \sigma_{21} & \sigma_{22} & \sigma_{23} \\
  \sigma_{31} & \sigma_{32} & \sigma_{33}
\end{matrix}}\right]

only six components are distinct, the three on the diagonal and the other being off-diagonal. Thus it can be expressed, in Mandel notation, as the vector

 
\tilde \sigma ^M=
\langle \sigma_{11}, 
\sigma_{22},
\sigma_{33},
\sqrt 2 \sigma_{12},
\sqrt 2 \sigma_{23},
\sqrt 2 \sigma_{13}
\rangle

The main advantage of Mandel notation is to allow the use of the same conventional operations used with vectors, for example:

 \tilde \sigma : \tilde \sigma = \tilde \sigma^M \cdot \tilde \sigma^M = 
\sigma_{11}^2 +
\sigma_{22}^2 +
\sigma_{33}^2 +
2 \sigma_{12}^2+
2 \sigma_{23}^2+
2 \sigma_{13}^2

A symmetric tensor of rank four satisfying Dijkl = Djikl and Dijkl = Dijlk has 81 components in four-dimensional space, but only 36 components are distinct. Thus, in Mandel notation, it can be expressed as

 \tilde D^M=
\begin{pmatrix}
  D_{1111} & D_{1122} & D_{1133}  & \sqrt 2 D_{1112} & \sqrt 2 D_{1123} & \sqrt 2 D_{1113} \\
  D_{2211} & D_{2222} & D_{2233}  & \sqrt 2 D_{2212} & \sqrt 2 D_{2223} & \sqrt 2 D_{2213} \\
  D_{3311} & D_{3322} & D_{3333}  & \sqrt 2 D_{3312} & \sqrt 2 D_{3323} & \sqrt 2 D_{3313} \\
  \sqrt 2 D_{1211} & \sqrt 2 D_{1222} & \sqrt 2 D_{1233}  & 2 D_{1212} & 2 D_{1223} & 2 D_{1213} \\
  \sqrt 2 D_{2311} & \sqrt 2 D_{2322} & \sqrt 2 D_{2333}  & 2 D_{2312} & 2 D_{2323} & 2 D_{2313} \\
  \sqrt 2 D_{1311} & \sqrt 2 D_{1322} & \sqrt 2 D_{1333}  & 2 D_{1312} & 2 D_{1323} & 2 D_{1313} \\
\end{pmatrix}

Applications

The notation is named after physicist Woldemar Voigt. It is useful, for example, in calculations involving constitutive models to simulate materials, such as the generalized Hooke's law, as well as finite element analysis.

Hooke's law has a symmetric fourth-order stiffness tensor with 81 components (3×3×3×3). Voigt notation enables this to be simplified to a 6×6 matrix. However, Voigt's form does not preserve the sum of the squares, which in the case of Hooke's law has geometric significance. This explains why weights are introduced (to make the mapping an isometry).

A discussion of invariance of Voigt's notation and Mandel's notation be found in Helnwein (2001).

See also

  • Vectorization (mathematics)
  • Hooke's law
  • P. Helnwein (2001). Some Remarks on the Compressed Matrix Representation of Symmetric Second-Order and Fourth-Order Tensors. Computer Methods in Applied Mechanics and Engineering, 190(22–23):2753–2770

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Voigt — est un patronyme partagé par plusieurs personnalités ainsi qu un nom en mathématique. Patronymes Angela Voigt, née Schmalfeld, née le 18 mai 1951, est une ancienne athlète est allemande, spécialisée dans le pentathlon, puis le saut en… …   Wikipédia en Français

  • Voigt (Begriffsklärung) — Voigt ist ein Familienname, siehe Voigt Siehe auch: Voigt Effekt, Effekt in der Magneto Optik Voigt Profil (auch Voigtfunktion), Faltung einer Gauß Kurve mit einer Lorentz Kurve Pseudo Voigt Profil (oder Pseudo Voigt Funktion), Näherungsfunktion… …   Deutsch Wikipedia

  • Notation de Voigt — Pour les articles homonymes, voir Voigt. On appelle notation de Voigt une convention permettant de réduire le nombre d indices utilisés pour décrire un tenseur symétrique. Cette notation permet de notamment de représenter sous forme matricielle… …   Wikipédia en Français

  • Voigt-Transformation — Die Lorentz Transformation verknüpft wie die Galilei Transformation die Koordinaten x,y,z,t eines Ereignisses in einem bestimmten Inertialsystem, mit den Koordinaten x ,y ,z ,t des gleichen Ereignisses in einem anderen Inertialsystem, welches in… …   Deutsch Wikipedia

  • Voigtsche Notation — Unter der Voigtschen Notation versteht man eine praktische Schreibweise für symmetrische Tensoren in der Kontinuumsmechanik, benannt nach dem Göttinger Physiker Woldemar Voigt. In der Kontinuumsmechanik werden Spannungen und Verzerrung als… …   Deutsch Wikipedia

  • Woldemar Voigt — Infobox Scientist name = Woldemar Voigt |150px image width = 150px caption = Woldemar Voigt (1850 1919) birth date = 2 September 1850 birth place = Leipzig, Saxony death date = 13 December 1919 death place = Göttingen, Germany residence = Germany …   Wikipedia

  • Woldemar Voigt — Pour les articles homonymes, voir Voigt. Woldemar Voigt Woldemar Voigt est un physicien allemand, né le 2 septembre 1850 à Leipzig et mort le …   Wikipédia en Français

  • Woldemar Voigt — [ˈvɔldəmar ˈfoːkt] (* 2. September 1850 in Leipzig; † 13. Dezember 1919 in Göttingen) war ein deutscher Physiker. Er lehrte theoretische Physik an der Georg August Universität in Göttingen …   Deutsch Wikipedia

  • Waldemar Voigt — Woldemar Voigt Woldemar Voigt est un physicien allemand, né le 2 septembre 1850 à Leipzig et mort le 13 décembre 1919 à Göttingen. Il est connu pour ses travaux en électromagnétisme et relativité : il a notamment… …   Wikipédia en Français

  • Tensor — For other uses, see Tensor (disambiguation). Note that in common usage, the term tensor is also used to refer to a tensor field. Stress, a second order tensor. The tensor s components, in a three dimensional Cartesian coordinate system, form the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”