- Antarctic Cold Reversal
The Antarctic Cold Reversal (ACR) was an important episode of cooling in the
climate history of the Earth, during the deglaciation at the close of the lastice age . It illustrates the complexity of the climate changes at the transition from thePleistocene to theHolocene Epoch.The
Last Glacial Maximum and sea-level minimum occurred c. 21,000 years before the present (BP). After 18,000 BP, Antarctic ice cores show gradual warming. At about 14,700 BP (or 12,700BCE ), theAntarctic ice sheet emitted a large pulse of meltwater, identified as "meltwater pulse 1A." [The output of mwp-1A has been calculated at 1,000,000 liters per second.] This meltwater pulse produced a marine transgression that raised global sea level about 20 meters (66 feet) in two centuries, which is thought to have influenced the start of the Bølling/Allerød interstadial that was the major break with glacial cold in the Northern Hemisphere. Yet meltwater pulse 1A was followed, inAntarctica and theSouthern Hemisphere , by a renewed cooling, the Antarctic Cold Reversal, which set in c. 14,500 BP (12,500 BCE) [Oldfield, p. 97; see also pp. 98-107.] and lasted for two millennia — an instance of warming causing cooling. [For a similar warming/cooling instance, see:8.2 kiloyear event .] The ACR brought an average cooling of perhaps 3°C. TheYounger Dryas cooling in the Northern Hemisphere began while the Antarctic Cold Reversal was still ongoing; and the ACR ended in the midst the Younger Dryas. [Thomas Blunier et al., "Phase Lag of Antarctic and Greenland Temperature in the last Glacial...," in Abrantes and Mix, pp. 121-38.]This pattern of climate decoupling between the Northern and Southern Hemispheres, and of "southern lead, northern lag," would manifest in subsequent climate events. The cause or causes of this hemispheric decoupling, of the "lead/lag" pattern, and of the specific mechanisms of the warming and cooling trends, are subjects of study and dispute among climate researchers. The specific dating and intensity of the Antarctic Cold Reversal are also under debate. [Cronin, pp. 209-10, 458-9.]
The onset of the ACR was followed, after about 800 years, by an Oceanic Cold Reversal in the
Southern Ocean .Notes
References
* Abrantes, Fatima, and Alan C. Mix, eds. "Reconstructing Ocean History: A Window into the Future." New York, Kluwer Academic, 1999.
* Blunier, T. J., et al. "Timing of the Antarctic Cold Reversal and the atmospheric CO2 increase with respect to the Younger Dryas event." "Geophysical Research Letters" 24 (21), 1997, pp. 2683-6. [http://www.agu.org/pubs/crossref/1997/97GL02658.shtml]
* Cronin, Thomas M. "Principles of Paleoclimatology." New York, Columbia University Press, 1999.
* Ehlers, Jűrgen, and Philip Leonard Gibbard. "Quarternary Glaciations: Extent and Chronology. Part III: South America, Asia, Africa, Australasia, Antarctica." Amsterdam, Elsevier, 2004.
* Markgraf, Vera, ed. "Interhemispheric Climate Linkages." Amsterdam, Elsevier, 2001.
* Oldfield, Frank. "Environmental Change: Key Issues and Alternative Perspectives." Cambridge, Cambridge University Press, 2005.
Wikimedia Foundation. 2010.