Invariant subspace problem — In the field of mathematics known as functional analysis, one of the most prominent open problems is the invariant subspace problem, sometimes optimistically known as the invariant subspace conjecture. It is the question whether the following… … Wikipedia
Geometric invariant theory — In mathematics Geometric invariant theory (or GIT) is a method for constructing quotients by group actions in algebraic geometry, used to construct moduli spaces. It was developed by David Mumford in 1965, using ideas from the paper… … Wikipedia
Strictly positive measure — In mathematics, strict positivity is a concept in measure theory. Intuitively, a strictly positive measure one that is nowhere zero , or that it is zero only on points .DefinitionLet ( X , T ) be a Hausdorff topological space and let Sigma; be a… … Wikipedia
Curvature invariant (general relativity) — Curvature invariants in general relativity are a set of scalars called curvature invariants that arise in general relativity. They are formed from the Riemann, Weyl and Ricci tensors which represent curvature and possibly operations on them such… … Wikipedia
Modular invariant of a group — In mathematics, a modular invariant of a group is an invariant of a finite group acting on a vector space of positive characteristic (usually dividing the order of the group). The study of modular invariants was originated in about 1914 by… … Wikipedia
Normal invariant — In mathematics, a normal map is a concept in geometric topology due to William Browder which is of fundamental importance in surgery theory. Given a Poincaré complex X, a normal map on X endows the space, roughly speaking, with some of the… … Wikipedia
Cantor set — In mathematics, the Cantor set, introduced by German mathematician Georg Cantor in 1883 [Georg Cantor (1883) Über unendliche, lineare Punktmannigfaltigkeiten V [On infinite, linear point manifolds (sets)] , Mathematische Annalen , vol. 21, pages… … Wikipedia
Non-measurable set — This page gives a general overview of the concept of non measurable sets. For a precise definition of measure, see Measure (mathematics). For various constructions of non measurable sets, see Vitali set, Hausdorff paradox, and Banach–Tarski… … Wikipedia
Harmonious set — In mathematics, a harmonious set is a subset of a locally compact abelian group on which every weak character may be uniformly approximated by strong characters. Equivalently, a suitably defined dual set is relatively dense in the Pontryagin dual … Wikipedia
List of mathematics articles (P) — NOTOC P P = NP problem P adic analysis P adic number P adic order P compact group P group P² irreducible P Laplacian P matrix P rep P value P vector P y method Pacific Journal of Mathematics Package merge algorithm Packed storage matrix Packing… … Wikipedia