Control plane

Control plane

In routing, the control plane is the part of the router architecture that is concerned with drawing the network map, or the information in a (possibly augmented) routing table that defines what to do with incoming packets. Control plane functions, such as participating in routing protocols, run in the architectural control element. [ [ftp://ftp.rfc-editor.org/in-notes/rfc3746.txt Forwarding and Control Element Separation (ForCES) Framework] , RFC 3746, Network Working Group, April 2004] In most cases, the routing table will contain a list of destination addresses and the outgoing interface(s) associated with them. Control plane logic also can define certain packets to be discarded, as well as preferential treatment of certain packets for which a high quality of service is defined by such mechanisms as differentiated services.

Depending on the specific router implementation, there may be a separate Forwarding Information Base that is populated (i.e., loaded) by the Control Plane, but used by the Forwarding Plane to look up packets, at very high speed, and decide how to handle them.

Building the Unicast Routing Table

A major function of the control plane is deciding which routes go into the main routing table. "Main" refers to the table that holds the unicast routes that are active. If the router also does multicast routing, there may be an additional routing table for multicast routes. Several routing protocols such as OSPF and BGP maintain internal data bases of candidate routes that they will promote if a route fails or routing policy is changed.

Several different information sources may provide information on a route to a given destination, but the router must select the "best" route to install into the routing table. In some cases, there may be multiple routes of equal "quality", and the router may install all of them and load-share across them.

Sources of Routing Information

There are three general sources of routing information:

* Information on the status of directly connected hardware and software-defined interfaces
* Manually configured static routes
* Information from (dynamic) routing protocols

Local Interface Information

Routers forward traffic that enters on an input interface and leaves on an output interface, subject to filtering and other local rules. While routers usually forward from one physical (e.g., Ethernet, serial) to another physical interface, it is also possible to define multiple logical interfaces on a physical interface. A physical Ethernet interface, for example, can have logical interfaces in several virtual LANs defined by IEEE 802.1q VLAN headers.

When an interface has an address configured in a subnet, such as 192.0.2.1 in the 192.0.2.0/24 (i.e., subnet mask 255.255.255.0) subnet, and that interface is considered "up" by the router, the router thus has a directly connected route to 192.0.2.0/24. If a routing protocol offered another router's route to that same subnet, the routing table installation software will normally ignore the dynamic route and prefer the directly connected route.

There also may be software-only interfaces on the router, which it treats as if they were locally connected. For example, most implementations have a "null" software-defined interface. Packets having this interface as a next hop will be discarded, which can be a very efficient way to filter traffic. Routers usually can route traffic faster than they can examine it and compare it to filters, so, if the criterion for discarding is the packet's destination address, "blackholing" the traffic will be more efficient than explicit filters.

Other software defined interfaces that are treated as directly connected, as long as they are active, are interfaces associated with tunneling protocols such as generic routing encapsulation (GRE) or Multi-Protocol Label Switching (MPLS).

Static routes

Router configuration rules may contain static routes. A static route minimally has a destination address, a prefix length or subnet mask, and a definition where to send packets for the route. That definition can refer to a local interface on the router, or a next-hop address that could be on the far end of a subnet to which the router is connected. The next-hop address could also be on a subnet that is directly connected, and, before the router can determine if the static route is usable, it must do a recursive lookup of the next hop address in the local routing table. If the next-hop address is reachable, the static route is usable, but if the next-hop is unreachable, the route is ignored.

Static routes also may have preference factors used to select the best static route to the same destination. One application is called a floating static route, where the static route is less preferred than a route from any routing protocol. The static route, which might use a dialup link or other slow medium, activates only when the dynamic routing protocol(s) cannot provide a route to the destination.

Static routes that are more preferred than any dynamic route also can be very useful, especially when using traffic engineering principles to make certain traffic go over a specific path with an engineered quality of service.

Dynamic routing protocols

See routing protocols. The routing table manager, according to implementation and configuration rules, may select a particular route or routes from those advertised by various routing protocols.

Installing Unicast Routes

Different implementations have different sets of preferences for routing information, and these are not standardized among IP routers. It is fair to say that subnets on directly connected active interfaces are always preferred. Beyond that, however, there will be differences.

Implementers generally have a numerical preference, which Cisco calls an "administrative distance", for route selection. The lower the preference, the more desirable the route. Cisco's IOS [ [http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fipr_c/ipcprt2/1cfindep.htm Configuring IP Routing Protocol-Independent Features] ,Cisco Systems,July 2006] implementation makes exterior BGP the most preferred source of dynamic routing information, while Nortel RS [ [http://support.nortel.com/go/main.jsp?cscat=DOCDETAIL&id=436071&poid=9015 Nortel Ethernet Routing Switch 8600 Configuring IP Routing Operations] , Nortel Networks, January 2007] makes intra-area OSPF most preferred.

The general order of selecting routes to install is:

# If the route is not in the routing table, install it.
# If the route is "more specific" than an existing route, install it in addition to the existing routes. "More specific" means that it has a longer prefix. A /28 route, with a subnet mask of 255.255.255.240, is more specific than a /24 route, with a subnet mask of 255.255.255.0.
# If the route is of equal specificity to a route already in the routing table, but comes from a more preferred source of routing information, replace the route in the table.
# If the route is of equal specificity to a route in the routing table, comes from a source of the same preference,
## Discard it if the route has a higher metric than the existing route
## Replace the existing route if the new route has a lower metric
## If the routes are of equal metric and the router supports load-sharing, add the new route and designate it as part of a load-sharing group. Typically, implementations will support a maximum number of routes that load-share to the same destination. If that maximum is already in the table, the new route is usually dropped.

Relationship between the routing table and forwarding information base

See forwarding plane for more detail, but each implementation has its own means of updating the Forwarding Information Base with new routes installed in the routing table. If the FIB is in one-to-one correspondence with the RIB, the new route is installed in the FIB after it is in the RIB. If the FIB is smaller than the RIB, and the FIB uses a hash table or other data structure that does not easily update, the existing FIB might be invalidated and replaced with a new one computed from the updated RIB.

Multicast Routing Tables

Multicast routing builds on unicast routing. Each multicast group to which the local router can route has a multicast routing table entry with a next hop for the group, rather than for a specific destination as in unicast routing.

There can be multicast static routes as well as learning dynamic multicast routes from a protocol such as Protocol-Independent Multicast (PIM).

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Routing control plane — In routing, the control plane is the part of the router architecture that is concerned with drawing the network map, or the information in a (possibly augmented) routing table that defines what to do with incoming packets. Control plane functions …   Wikipedia

  • Plane Crazy — (first released on May 15, 1928) was the first animated cartoon to feature Mickey Mouse, as well as Minnie Mouse. A soundtrack by Carl W. Stalling was added to the cartoon on December 29, 1928. Plane Crazy was followed by The Gallopin Gaucho and… …   Wikipedia

  • Plane Crazy — Saltar a navegación, búsqueda Plane Crazy (estrenado el 15 de mayo de 1928) es el primer cortometraje animado de Walt Disney en el que aparece el personaje de Mickey Mouse, así como su novia Minnie Mouse. El corto fue codirigido por Walt Disney y …   Wikipedia Español

  • Control reversal — is an adverse effect on the controllability of aircraft. The flight controls reverse themselves in a way that is not intuitive, so pilots may not be aware of the situation and therefore provide the wrong inputs; in order to roll to the left, for… …   Wikipedia

  • Control surface — may refer to: Audio control surface a control surface in airplane flight controls Diving plane, a control surface in submarines In fluid dynamics, a surface through which flux occurs, causing convergence or divergence of a control volume (see… …   Wikipedia

  • Plane (Dungeons & Dragons) — Ethereal plane redirects here. For the mystical concept, see Etheric plane. The planes of the Dungeons Dragons roleplaying game constitutes the multiverse in which the game takes place. In the earliest versions of Dungeons Dragons, the concept of …   Wikipedia

  • Plane (tool) — A plane is a tool for shaping wood. Planes are used to flatten, reduce the thickness of, and impart a smooth surface to a rough piece of lumber. Special types of planes are designed to cut joints or decorative mouldings.Hand planes are generally… …   Wikipedia

  • Control theory — For control theory in psychology and sociology, see control theory (sociology) and Perceptual Control Theory. The concept of the feedback loop to control the dynamic behavior of the system: this is negative feedback, because the sensed value is… …   Wikipedia

  • Plane (Unicode) — Main article: Mapping of Unicode characters In the Unicode system, planes are groups of numerical values that point to specific characters. Unicode code points are logically divided into 17 planes, each with 65,536 (= 216) code points. Planes are …   Wikipedia

  • Control (management) — Controlling is one of the managerial functions like planning, organizing, staffing and directing. It is an important function because it helps to check the errors and to take the corrective action so that deviation from standards are minimized… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”