- UDOP
The UDOP (UHF Doppler) multistatic radar and multiradar system (MSRS) utilizes
Doppler radar for missile tracking and trajectory measurement. A target is illuminated at 450 MHz. Five receiving stations, located along the baselines with the lengths from 25 to 75 miles, receive signals from the target's transponder at 900 MHz. These five stations yield slant-range rate. To computed the range or position, an initial position is required from some other tracking system. The random error is 0.06 m, but total error includes the systematic error of 2.7 m plus the initial error. UDOP had relatively low cost compared with other high-accuracy systems. In the US, Multistatic Radars and Multiradar Systems (MSRS) have found important applications for precision measurements of missile trajectories at the Air ForceEastern Test Range , which extends from the Florida mainland to the Indian Ocean. These MSRSs include theAZUSA , theMISTRAM , and the UDOP. All systems employ a cooperative beacon transponder on the observed target and a ground-based transmitting station with several receiving stations at separate, precisely located sites. (1,2)The UDOP used an AN/DRN-11 transponder installed in the
Saturn (rocket family) launch vehicle forProject Gemini missions.The C-band CW interferometric
AZUSA , in operation from 1950s, contains one transmitter and nine receivers located along two crossed baselines with the total lengths of about 500m. Intermediate receivers spaced at 5 and 50 m are used for phase ambiguity resolution. The Azusa system measures range by phase measurement of sideband frequencies modulating the carrier, coherent range by Doppler count, two direction cosines, and two cosine rates. Errors of less than 3m in range and 20 ppm in direction cosine are obtainable. (1)MISTRAM (Missile Trajectory Measurement) is a CW interferometric system with receiving stations situated along two mutually perpendicular baselines spaced at 3 and 30 km. This MSRS can measure range, four range differences, range rate and four range difference rates of a target. The range error is less than 0.8m. (1)=Principles of Operation=There is nothing new in using a CW tracking system to obtain metric data. The system was augmented in 1965 by short baselines of a few meters to a few hundred meters in contrast to the conventional UDOP system with baselines of several kilometers and longer. The UDOP (UHF Doppler) system was used extensively for the
Saturn (rocket family) program at theNASA John F.Kennedy Space Center .(3)UDOP is a 2-way, coherent, continuous-wave, tracking system. It is a highly reliable data source providing very accurate velocity measurements. The UDOP system, a descendant of DOVAP, (Doppler Velocity and Position), was developed by NASA-KSC.
OPERATION
UDOP consists of three basic elements::# The ground transmitters:# The airborne transponder:# The ground receiver
In practice, a central recording station and data handling system are also used.
A simplified, functional block diagram of the close-in UDOP tracking system is shown in the figure. The transmitters use a primary frequency standard to derive frequencies used. The standard is multiplied to 50 mc and broadcast as a reference signal to the receiver sites. The 50 mc is multiplied to 450 mc and transmitted to the
transponder on board the vehicle as an interrogation signal. Thetransponder receives the 450 mc signal, doubles and re-transmits at 900 mc.The ground stations simultaneously receive the 50 mc reference signal and the 900 mc transponder signal. The 50 mc signal is multiplied by 18 and compared to the 900 mc signal. The difference will be zero for a vehicle on the pad and there will be a doppler effect (measured in cycles per second) if the vehicle is in motion. This effect will be proportional to a loop veiocity with amount depending on the location of the transmitter site, receiver sites, as well as vehicle position and velocity.
The UDOP ground receivers are double,
superheterodyne , dual-channel units with common local oscillators. All resulting frequencies after mixing are related to the frequency standard except those experiencing doppler shift. Consequently, the doppler effects are measurable.INTERIM-OFFSET UDOP OPERATION
The existing system operates in an offset mode where the reference frequency is raised to 5 kc higher than 900 mc causing a 5 kc beat frequency as long as the vehicle is on the pad. When the vehicle moves, the
doppler effect adds to the 5 kc frequency. The primary advantage is simplification of data handling as the frequency varies from 5 kc rather than zero. This offset frequency is derived using phased-locked loop techniques.DATA REDUCTION
The UDOP digitized data recorded from each receiver station was fed to a computer which calculated positions X, Y, and Z. These positions were then fitted to a second degree polynomial using mid-point, moving arc smoothing over a one second interval.
From this process, smoothed position, velocity, and acceleration were obtained.
The data presented were reduced to at earth fixed, right handed, rectangular cartesian coordinate system. The Y axis is normal to the Clarke Spheroid of 1866 and positive upward. The X axis is positive in the direction of the flight azimuth. The origin for the UDOP system is at the vehicle transmitting antenna at vehicle launch position. (3)
=References=
#V S Chernyak. Fundamentals of Multisite Radar Systems: Multistatic Radars and Multiradar Systems. (Translated from Russian). CRC Press: New York, 1998. Pp. 26-27.
#Schneid, Daniel L. THE UDOP HANDBOOK. National Technical Information Service document no. AD0609038, JUL 1964, 214 pp.
#Instrumentation Systems Analysis Branch (K-ED2) and Tracking Branch (K-EF4), Saturn early launch phase tracking by CW Doppler, John F. Kennedy Space Center, SP-79, April 13, 1964, NASA doc. no. N65-19700, 52 pp.
Wikimedia Foundation. 2010.