Almost symplectic manifold
- Almost symplectic manifold
In differential geometry, an almost symplectic structure on a differentiable manifold "M" is a two-form ω on "M" which is everywhere non-singular. If, in addition, ω is closed, then it is a symplectic form.
An almost symplectic manifold is an Sp-structure; requiring ω to be closed is an integrability condition.
Wikimedia Foundation.
2010.
Look at other dictionaries:
Symplectic manifold — In mathematics, a symplectic manifold is a smooth manifold, M, equipped with a closed nondegenerate differential 2 form, ω, called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology.… … Wikipedia
Almost complex manifold — In mathematics, an almost complex manifold is a smooth manifold equipped with smooth linear complex structure on each tangent space. The existence of this structure is a necessary, but not sufficient, condition for a manifold to be a complex… … Wikipedia
Symplectic geometry — is a branch of differential topology/geometry which studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2 form. Symplectic geometry has its origins in the Hamiltonian formulation of classical… … Wikipedia
Manifold — For other uses, see Manifold (disambiguation). The sphere (surface of a ball) is a two dimensional manifold since it can be represented by a collection of two dimensional maps. In mathematics (specifically in differential geometry and topology),… … Wikipedia
Hermitian manifold — In mathematics, a Hermitian manifold is the complex analog of a Riemannian manifold. Specifically, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define … Wikipedia
Poisson manifold — In mathematics, a Poisson manifold is a differentiable manifold M such that the algebra of smooth functions over M is equipped with a bilinear map called the Poisson bracket, turning it into a Poisson algebra. Since their introduction by André… … Wikipedia
Kähler manifold — In mathematics, a Kähler manifold is a manifold with unitary structure (a U ( n ) structure) satisfying an integrability condition.In particular, it is a complex manifold, a Riemannian manifold, and a symplectic manifold, with these three… … Wikipedia
Hyperkähler manifold — In differential geometry, a hyperkähler manifold is a Riemannian manifold of dimension 4 k and holonomy group contained in Sp( k ) (here Sp( k ) denotes a compact form of a symplectic group, identifiedwith the group of quaternionic linear unitary … Wikipedia
Complex manifold — In differential geometry, a complex manifold is a manifold with an atlas of charts to the open unit disk[1] in Cn, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a complex manifold in the sense… … Wikipedia
4-manifold — In mathematics, 4 manifold is a 4 dimensional topological manifold. A smooth 4 manifold is a 4 manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different.… … Wikipedia