STO-nG basis sets

STO-nG basis sets

= STO-nG basis sets =

STO-nG basis sets are the minimal basis sets, where 'n' represents the number of primitive Gaussian functions comprising a single basis set. For minimal basis sets, the core and valence orbitals are represented by same number primitive Gaussian functions mathbf phi_i. For example, an STO-3G basis set for the 1s orbital of H atom is a linear combination of 3 primitive Gaussian functions. It is easy to calculate the energy of an electron in the 1s orbital of H atom represented by STO-nG basis sets. In the following sections, the structure of the STO-nG minimal basis sets are explained with H atom as an example."'

STO-1G basis set

"'mathbf psi(1s_H)= psi_{STO-1G}=c_1phi_1, where mathbf c_1 = 1 and mathbf phi_1 = left (frac{2alpha_1}{pi} ight ) ^{0.75}e^{-alpha_1 r^2}. The optimum value of mathbf alpha_1 is the one which gives the minimum value for the Energy of the 1s electron of H atom. The exponent mathbf alpha_1 for the STO-1G basis set can be manually derived by equating the derivative of the energy with respect to the exponent to zero.
Thus mathbf alpha_1 = frac{8 Z^2}{9 pi} = 0.28294212 and for the value mathbf alpha_1 = 0.28294212, the energy of the 1s electron of H atom can be calculated as mathbf -0.42441318 hartree. The expression for the energy of the 1s electron of H atom is a function only of mathbf c_1, mathbf alpha_1 and other fundamental constants such as mathbf pi. For convenience, the basis set details can be represented as follows

Calculation of electronic energy using STO-nG basis sets (For ex. H atom)

The electronic energy of a molecular system is calculated as the expectation value of the molecular electronic Hamiltonian :

mathbf E_{elec} = frac{}{},

where mathbf hat{H}_e is the electronic hamiltonian of the molecule. The expectation values can be analytically solved only for a two body system such as a Hydrogen atom. The electronic Hamiltonian for H-atom is given bymathbf hat{H}_e = -frac{ abla^2}{2}-frac{Z}{r}.
The exact integrals for the kinetic energy, potential energy expectation values and overlap integrals can be obtained as follows

mathbf E_{elec} = frac{}{},

mathbf E_{elec} = frac{ + }{},

mathbf E_{elec} = frac{ + }{}.

Now the total energy expectation value can be divided into 3 parts, the kinetic energy expectation value, the potential energy expectation value and the overlap integrals.

mathbf E_{elec} = frac{+}{S} where,

mathbf = frac {6sqrt{2}sum_{i=1}^n sum_{j=1}^n c_i c_j (alpha_ialpha_j)^{7/4{(alpha_i+alpha_j)^{5/2,

mathbf = frac {-4sqrt{2}Z sum_{i=1}^n sum_{j=1}^n c_i c_j (alpha_ialpha_j)^{3/4{sqrt{pi}(alpha_i+alpha_j)},

mathbf S = frac {2sqrt{2} sum_{i=1}^n sum_{j=1}^n c_i c_j (alpha_ialpha_j)^{3/4{(alpha_i+alpha_j)^{3/2.


Thus when an STO-nG basis set with n Gaussian promitives is used, there are n^2 kinetic energy integrals, n^2 potential energy integrals and n^2 overlap integrals. Thus with n primitive GTFs in the basis set, we need 3n^2 integrals.

Appendix

The basis sets STO-nG [n=2,3&6] can be referred from the online basis set exchange [Ref. 1] and the energy of the 1s electron of H atom can easily be calculated by hand or by using a small program. Following is a Fortran77 program where the energy expression is explicitly stated and by giving the basis set as the input, the energy value is obtained as output.

!---------------------------------------------------------------- ! PROGRAM sto_ng CALCULATES THE ENERGY OF 1s ELECTRON OF "H" ATOM ! OR OTHER HYDROGENIC ATOMIC SYSTEMS WITH MINIMAL BASIS SETS. THE ! PROGRAM CAN BE EASILY EXTENDED FOR LARGER BASIS SETS. !---------------------------------------------------------------- PROGRAM sto_ng IMPLICIT NONE !---------------------------------------------------------------- ! i AND j : DUMMY INDICES ! n : NUMBER OF PRIMITIVE GTOs ! Z : ATOMIC NUMBER !---------------------------------------------------------------- INTEGER i, j, n, Z !---------------------------------------------------------------- ! V(i,j) : i,j TH ELEMENT OF THE POTENTIAL ENERGY MATRIX ! T(i,j) : i,j TH ELEMENT OF THE KINETIC ENERGY MATRIX ! S(i,j) : i,j TH ELEMENT OF THE OVERLAP INTEGRAL MATRIX ! VI : TOTAL SUM OF ALL POTENTIAL ENERGY INTEGRALS ! TI : TOTAL SUM OF ALL KINETIC ENERGY INTEGRALS ! SI : TOTAL SUM ALL OF OVERLAP INTEGRALS ! c(i) : i TH COEFFICIENT !alpha(i) : i TH EXPONENT !---------------------------------------------------------------- DOUBLE PRECISION V(100,100), T(100,100), S(100,100) DOUBLE PRECISION alpha(100), c(100), VI, TI, SI, PI PI=3.1415926535898D0 OPEN(UNIT=1, FILE="input.txt") OPEN(UNIT=2, FILE="output.txt") READ(1,*)Z,n DO i=1,n READ(1,*)alpha(i),c(i) ENDDO !---------------------------------------------------------------- ! CALCULATION OF OVERLAP INTEGRALS AND THEIR SUMMATION !---------------------------------------------------------------- DO i=1,n DO j=1,n S(i,j)=c(i)*c(j)*2.0D0*SQRT(2.0D0)*(alpha(i)*alpha(j))**0.75D &0/(alpha(i)+alpha(j))**(1.5D0) ENDDO ENDDO SI=0.0D0 DO i=1,n DO j=1,n SI=SI+S(i,j) ENDDO ENDDO !---------------------------------------------------------------- ! CALCULATION OF KINETIC ENERGY INTEGRALS AND THEIR SUMMATION !---------------------------------------------------------------- DO i=1,n DO j=1,n T(i,j)=c(i)*c(j)*6.0D0*SQRT(2.0D0)*(alpha(i)*alpha(j))**1.75D0/ &(alpha(i)+alpha(j))**(2.5D0) ENDDO ENDDO TI=0.0D0 DO i=1,n DO j=1,n TI=TI+T(i,j) ENDDO ENDDO !---------------------------------------------------------------- ! CALCULATION OF POTENTIAL ENERGY INTEGRALS AND THEIR SUMMATION !---------------------------------------------------------------- DO i=1,n DO j=1,n V(i,j)=-c(i)*c(j)*4.0D0*SQRT(2.0D0)*Z*(alpha(i)*alpha(j))**0. &75D0/(SQRT(PI)*(alpha(i)+alpha(j))) ENDDO ENDDO VI=0.0D0 DO i=1,n DO j=1,n VI=VI+V(i,j) ENDDO ENDDO WRITE(2,*)" Basis set : " WRITE(2,002)"ALPHA(i)","C(i)" DO i=1,n WRITE(2,003)alpha(i),c(i) ENDDO WRITE(2,001)" K.E. integral is :", TI," hartree" WRITE(2,001)" P.E. integral is :", VI," hartree" WRITE(2,001)" Overlap Integral is :", SI," hartree" WRITE(2,001)" Energy of H atom is :", (VI+TI)/SI," hartree/partic &le" WRITE(2,001)" ENERGY of H atom is :",(VI+TI)*27.211397D0/SI," e.V &./particle" WRITE(2,001)" ENERGY of H atom is :",(VI+TI)*627.509D0/SI," kcal/ &mol" WRITE(2,001)" ENERGY of H atom is :",(VI+TI)*2625.51D0/SI," kJ/mo &l" WRITE(2,001)" ENERGY of H atom is :",(VI+TI)*219475D0/SI," cm-1" 001 FORMAT(A,D20.10,A) 002 FORMAT(8X,A,19X,A) 003 FORMAT(D20.10,6X,D20.10) 004 FORMAT(D20.10) CLOSE(1) CLOSE(2) STOP END

INPUT FILE DETAILS FILE : input.txt 1 ! ATOMIC NUMBER 2 ! NO. OF PRIMITIVE GTOs 0.1309756377D+01 0.4301284983D+00 ! BASIS SET alpha c 0.2331359749D+00 0.6789135305D+00

OUTPUT FILE DETAILS FILE : output.txt Basis set : ALPHA(i) C(i) 0.1309756377E+01 0.4301284983E+00 0.2331359749E+00 0.6789135305E+00 K.E. integral is : 0.7348827001E+00 hartree P.E. integral is : -0.1189280102E+01 hartree Overlap Integral is : 0.1000000000E+01 hartree Energy of H atom is : -0.4543974016E+00 hartree/particle ENERGY of H atom is : -0.1236478809E+02 e.V./particle ENERGY of H atom is : -0.2851384591E+03 kcal/mol ENERGY of H atom is : -0.1193024922E+04 kJ/mol ENERGY of H atom is : -0.9972886973E+05 cm-1

See also

*Quantum chemistry computer programs

References :

[1] http://gnode2.pnl.gov/bse/portal


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • STO — can stand for:*Service du travail obligatoire, a forced labour programme introduced by the Vichy French government during World War II *Slater type orbital, a function used to describe atomic orbitals in quantum chemistry *Société de transport de …   Wikipedia

  • Basis set (chemistry) — A basis set in chemistry is a set of functions used to create the molecular orbitals, which are expanded as a linear combination of such functions with the weights or coefficients to be determined. Usually these functions are atomic orbitals, in… …   Wikipedia

  • Base STO-nG — Une base STO nG est une base utilisée en chimie numérique, c est à dire un ensemble de fonctions utilisées afin de créer des orbitales moléculaires. Il s agit d une base minimale pour laquelle n orbitales gaussiennes primitives sont ajustées à… …   Wikipédia en Français

  • 1s Slater-type function — A normalized 1s Slater type function is a function which has the form:psi {1s}(zeta, mathbf{r R}) = left(frac{zeta^3}{pi} ight)^{1 over 2} , e^{ zeta |mathbf{r R}. [cite book last = Attila Szabo and Neil S. Ostlund first = title = Modern Quantum… …   Wikipedia

  • Base (Chimie Quantique) — Pour les articles homonymes, voir Base. Une base en chimie quantique est un ensemble de fonctions utilisées afin de créer des orbitales moléculaires, qui sont développées comme combinaisons linéaires de telles fonctions avec des poids ou… …   Wikipédia en Français

  • Base (chimie quantique) — Pour les articles homonymes, voir Base. Une base en chimie quantique est un ensemble de fonctions utilisées afin de modéliser des orbitales moléculaires, qui sont développées comme combinaisons linéaires de telles fonctions avec des poids ou… …   Wikipédia en Français

  • Crystal (software) — For other uses, see Crystal (disambiguation). CRYSTAL is a quantum chemistry ab initio program, designed primarily for calculations on crystals (3 dimensions), slabs (2 dimensions) and polymers (1 dimension) using translational symmetry, but it… …   Wikipedia

  • Soap opera — For other uses, see Soap opera (disambiguation). A soap opera, sometimes called soap for short, is an ongoing, episodic work of dramatic fiction presented in serial format on radio or as television programming. The name soap opera stems from the… …   Wikipedia

  • Nobel Prizes — ▪ 2009 Introduction Prize for Peace       The 2008 Nobel Prize for Peace was awarded to Martti Ahtisaari, former president (1994–2000) of Finland, for his work over more than 30 years in settling international disputes, many involving ethnic,… …   Universalium

  • Ankh-Morpork — Discworld location Creator Terry Pratchett Genre Comic fantasy Type City state Notab …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”