Normal crossing divisor

Normal crossing divisor

In algebraic geometry, normal crossing divisors are a class of divisors which generalize the smooth divisors. Intuitively they cross only in a transversal way.

Let "A" be an algebraic variety, and Z= Z_i a reduced Cartier divisor, with Z_i its irreducible components. Then "Z" is called a smooth normal crossing divisor if either

:(i) "A" is a curve, or :(ii) all Z_i are smooth, and for each component Z_k, (Z-Z_k)|_{Z_k} is a smooth normal crossing divisor.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Normal crossings — In algebraic geometry normal crossings is the property of intersecting geometric objects to do it in a transversal way. Contents 1 Normal crossing divisors 2 Normal crossings singularity 3 Simple normal crossings singularity …   Wikipedia

  • List of mathematics articles (N) — NOTOC N N body problem N category N category number N connected space N dimensional sequential move puzzles N dimensional space N huge cardinal N jet N Mahlo cardinal N monoid N player game N set N skeleton N sphere N! conjecture Nabla symbol… …   Wikipedia

  • Resolution of singularities — Strong desingularization of Observe that the resolution does not stop after the first blowing up, when the strict transform is smooth, but when it is simple normal crossings with the exceptional divisors. In algebraic geometry, the problem of… …   Wikipedia

  • Polar homology — In complex geometry, a polar homology is a group which captures holomorphic invariants of a complex manifold in a similar way to usual homology of a manifold in differential topology. Polar homology was defined by B. Khesin and A. Rosly in… …   Wikipedia

  • Anexo:Volúmenes de Bleach — Este es un listado de los volúmenes del manga Bleach, creado por Tite Kubo. Su publicación se inició en Japón en agosto de 2001, en la Weekly Shōnen Jump, donde continúa. El manga ha sobrepasado los 450 capítulos, recopilados en sucesivos tomos,… …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”