Baumslag–Solitar group

Baumslag–Solitar group

In the mathematical field of group theory, the Baumslag–Solitar groups are examples of two-generator one-relator groups that play an important role in combinatorial group theory and geometric group theory as (counter)examples and test-cases. They are given by the group presentation

: langle a, b mid b a^m b^{-1} = a^n angle.

For each integer m and n, the Baumslag–Solitar group is denoted B(m,n). The relation in the presentation is called the Baumslag–Solitar relation.

Some of the various B(m,n) are well-known groups. B(1,1) is the free abelian group on two generators, and B(1,-1) is the Klein bottle group.

These groups were defined by Gilbert Baumslag and Donald Solitar in 1962 to provide examples of non-Hopfian groups. The class of Baumslag–Solitar groups contains residually finite groups, Hopfian groups that are not residually finite, and non-Hopfian groups.

Linear representation

Define A=ig(egin{smallmatrix}1&1\0&1end{smallmatrix}ig) and B=ig(egin{smallmatrix}frac{n}{m}&0\0&1end{smallmatrix}ig). The matrix group G generated by A and B is isomorphic to B(m,n), via the isomorphism Amapsto a, Bmapsto b.

References

*
* Gilbert Baumslag and Donald Solitar, [http://projecteuclid.org/euclid.bams/1183524561 "Some two-generator one-relator non-Hopfian groups"] , Bulletin of the American Mathematical Society 68 (1962), 199–201. MathSciNet|id=0142635


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Gilbert Baumslag — is a Distinguished Professor at the City College of New York, with joint appointments in mathematics, computer science, and electrical engineering. He is director of the Center for Algorithms and Interactive Scientific Software, which grew out of …   Wikipedia

  • Geometric group theory — is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups act (that is, when the… …   Wikipedia

  • Automatic group — In mathematics, an automatic group is a finitely generated group equipped with several finite state automata. These automata can tell if a given word representation of a group element is in a canonical form and can tell if two elements given in… …   Wikipedia

  • Hopfian group — In mathematics, a Hopfian group is a group G for which every epimorphism: G rarr; G is an isomorphism. Equivalently, a group is Hopfian if and only if it is not isomorphic to any of its proper quotients.Example of Hopfian groups* Every finite… …   Wikipedia

  • Hyperbolic group — In group theory, a hyperbolic group, also known as a word hyperbolic group, Gromov hyperbolic group, negatively curved group is a finitely generated group equipped with a word metric satisfying certain properties characteristic of hyperbolic… …   Wikipedia

  • Группа Баумслага — В алгебре, группа Баумслага Солитера   группа с двумя образующими и и одним соотношением Эта группа обычно обозначается . Примеры и свойства это свободн …   Википедия

  • Dehn function — In the mathematical subject of geometric group theory, a Dehn function, named after Max Dehn, is an optimal function associated to a finite group presentation which bounds the area of a relation in that group (that is a freely reduced word in the …   Wikipedia

  • Présentation d'un groupe — En théorie des groupes, un groupe peut se définir par une présentation autrement dit la donnée d un ensemble de générateurs et d un ensemble de relations que ceux ci vérifient. La possibilité d une telle définition découle de ce que tout groupe… …   Wikipédia en Français

  • List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… …   Wikipedia

  • Schur multiplier — In mathematical group theory, the Schur multiplier or Schur multiplicator is the second homology group of a group G. It was introduced by Issai Schur (1904) in his work on projective representations. Contents 1 Examples and properties 2 Re …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”