Dirichlet integral

Dirichlet integral

In mathematics, there are several integrals known as the Dirichlet integral, after the German mathematician Peter Gustav Lejeune Dirichlet.

One of those is

\int_0^\infty \frac{\sin \omega}{\omega}\,d\omega = \frac{\pi}{2}

This can be derived from attempts to evaluate a double improper integral two different ways. It can also be derived using differentiation under the integral sign.

Contents

Evaluation

Double Improper Integral Method

Pre-knowledge of properties of Laplace transforms allows us to evaluate this Dirichlet integral succinctly in the following manner:

\int_0^\infty\frac{\sin t}{t}\, dt=\int_{0}^{\infty}\mathcal{L}\{\sin t\}\, ds=\int_{0}^{\infty}\frac{1}{s^{2}+1}\, ds=\arctan s\bigg|_{0}^{\infty}=\frac{\pi}{2}

This is equivalent to attempting to evaluate the same double definite integral in two different ways, by reversal of the order of integration, viz.,

\left ( I_1=\int_0^\infty {\int _0^\infty e^{-st} \sin t\, dt}\, ds\right ) = \left ( I_2=\int_0^\infty {\int _0^\infty e^{-st} \sin t\, ds} \, dt = \int_0^\infty \sin t{\int _0^\infty e^{-st}\, ds} \, dt\right ),
\left ( I_1=\int_0^\infty {\frac{1}{s^2+1}}\, ds = \frac{\pi}{2}\right ) = \left ( I_2=\int_0^\infty \sin t\, \frac{1}{t} \, dt\right ) \text{, provided } s>0.

Differentiation under the integral sign

First rewrite the integral as a function of variable \!a. Let

f(a)=\int_0^\infty e^{-a\omega} \frac{\sin \omega}{\omega} d\omega ;

then we need to find \!f(0).

Differentiate with respect to \!a and apply the Leibniz Integral Rule to obtain:

\frac{df}{da}=\frac{d}{da}\int_0^\infty e^{-a\omega} \frac{\sin \omega}{\omega} d\omega = \int_0^\infty  \frac{\partial}{\partial a}e^{-a\omega}\frac{\sin \omega}{\omega} d\omega = -\int_0^\infty e^{-a\omega} \sin \omega \,d\omega = -\mathcal{L}\{\sin \omega\}(a).

This integral was evaluated without proof, above, based on Laplace trasform tables; we derive it this time. It is made much simpler by recalling Euler's formula,

\! e^{i\omega}=\cos \omega + i\sin \omega ,

then,

\Im e^{i\omega}=\sin \omega, where \Im represents the imaginary part.
\therefore\frac{df}{da}=-\Im\int_0^\infty e^{-a\omega}e^{i\omega}d\omega=\Im\frac{1}{-a+i}=\Im\frac{-a-i}{a^2+1}=\frac{-1}{a^2+1} \text{, given that } a > 0 .

Integrating with respect to \!a:

f(a) = \int \frac{-da}{a^2+1} = A - \arctan a,

where \! A is a constant to be determined. As,

f(+\infty)=0 \therefore A = \arctan (+\infty) = \frac{\pi}{2} + m\pi,
\therefore f(0)=\lim _{a \to 0^+} f(a) = \frac{\pi}{2} + m\pi - \arctan 0 = \frac{\pi}{2} + n\pi,

for some integers m & n. It is easy to show that \!n has to be zero, by analyzing easily observed bounds for this integral:

0<\int _0^\infty \frac {\sin x}{x}dx < \int _0^\pi \frac {\sin x}{x}dx < \pi

End of proof.

Extending this result further, with the introduction of another variable, first noting that \! {\sin x}/{x} is an even function and therefore

\int_0^\infty \frac{\sin x}{x}\,dx = \int_{-\infty}^0 \frac{\sin x}{x}\,dx = -\int_0^{-\infty} \frac{\sin x}{x}\,dx,

then:

\int_0^\infty \frac{\sin b\,\omega}{\omega}\,d\omega = \int_0^{b\,\infty} \frac{\sin b\,\omega}{b\,\omega}\,d(b\,\omega) = \int_0^{\sgn b\times\infty} \frac{\sin x}{x}\,dx = \sgn b \int_0^\infty \frac{\sin x}{x}\,dx = \frac{\pi}{2}\,\sgn b

Complex integration

The same result can be obtained via complex integration. Let's consider

 f(z)=\frac{e^{iz}}{z}

As a function of the complex variable z, it has a simple pole at the origin, which prevents the application of Jordan's lemma, whose other hypotheses are satisfied. We shall then define a new function[1] g(z) as follows

 g(z)=\frac{e^{iz}}{z +i\epsilon}

The pole has been moved away from the real axis, so g(z) can be integrated along the semicircle of radius R centered at z=0 and closed on the real axis, then the limit \epsilon \rightarrow 0 should be taken.

The complex integral is zero by the residue theorem, as there are no poles inside the integration path

 0 = \int_\gamma g(z) = \int_{-R}^R \frac{e^{ix}}{x +i\epsilon} dx + \int_{0}^{\pi} \frac{e^{i(Re^{i\theta} + \theta)}}{Re^{i\theta} +i\epsilon} iR d\theta

The second therm vanishes as R goes to infinity; for arbitrarily small ε, the Sokhatsky–Weierstrass theorem applied to the first one yelds

 0= \mathrm{P.V.} \int \frac{e^{ix}}{x} dx - \pi i \int_{-\infty}^{\infty}\delta(x) e^{ix} dx

Where P.V. indicates Cauchy Principal Value. By taking the imaginary part on both sides and noting that sinc(x) is even and by definition sinc(0) = 1, we get the desired result

 \lim_{\epsilon\rightarrow 0}\int_\epsilon^{\infty} \frac{\sin(x)}{x} = \int_0^{\infty} \frac{\sin(x)}{x} = \frac{\pi}{2}


Notes

  1. ^ Appel, Walter. Mathematics for Physics and Physicists. Princeton University Press, 2007, p. 226.

See also

  • Dirichlet principle

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Dirichlet-Prinzip — Das Dirichlet Prinzip in der Potentialtheorie besagt, dass Funktionen u in einem Gebiet (mit vorgegebenen Werten u = g auf dem Rand von G), die das „Energiefunktional“ (Dirichlet Integral) mini …   Deutsch Wikipedia

  • Dirichlet eta function — For the modular form see Dedekind eta function. Dirichlet eta function η(s) in the complex plane. The color of a point s encodes the value of η(s). Strong colors denote values close to zero and hue encodes the value s argumen …   Wikipedia

  • Dirichlet problem — In mathematics, a Dirichlet problem is the problem of finding a function which solves a specified partial differential equation (PDE) in the interior of a given region that takes prescribed values on the boundary of the region. The Dirichlet… …   Wikipedia

  • Dirichlet series — In mathematics, a Dirichlet series is any series of the form where s and an are complex numbers and n = 1, 2, 3, ... . It is a special case of general Dirichlet series. Dirichlet series play a variety of important roles in analytic number theory …   Wikipedia

  • Integral de Lebesgue — La integral de una función no negativa puede ser interpretada como el área bajo la curva. En matemática, la integración de una función no negativa (por considerar el caso más simple) puede considerarse como el área entre la gráfica de una curva y …   Wikipedia Español

  • Dirichlet's principle — Not to be confused with Pigeonhole principle. In mathematics, Dirichlet s principle in potential theory states that, if the function u(x) is the solution to Poisson s equation on a domain Ω of with boundary condition then u can be obtained as the …   Wikipedia

  • Dirichlet density — This article is not about the Dirichlet distribution of probability theory. In mathematics, the Dirichlet density (or analytic density) of a set of primes, named after Johann Gustav Dirichlet, is a measure of the size of the set that is easier to …   Wikipedia

  • Dirichlet-Charakter — Im mathematischen Teilgebiet der Darstellungstheorie sind Charaktere gewisse Homomorphismen. Inhaltsverzeichnis 1 Charaktere einer Gruppe 1.1 Abstrakte und topologische Gruppen 1.1.1 Eigenschaften 1.2 Di …   Deutsch Wikipedia

  • Dirichlet-Funktion — Die Dirichlet Funktion (nach dem deutschen Mathematiker Peter Gustav Lejeune Dirichlet, manchmal auch als Dirichletsche Sprungfunktion bezeichnet) ist eine mathematische Funktion, die üblicherweise mit D bezeichnet wird. Sie ist die… …   Deutsch Wikipedia

  • Dirichlet's energy — In mathematics, the Dirichlet s energy is a numerical measure of how variable a function is. More abstractly, it is a quadratic functional on the Sobolev space H1. The Dirichlet energy is intimately connected to Laplace s equation and is named… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”