Unduloid

Unduloid

In geometry, an unduloid, or onduloid, is a surface with constant nonzero mean curvature. It is obtained as a surface of revolution of an elliptic catenary: that is, by rolling an ellipse along a fixed line, tracing the focus, and revolving the resulting curve around the line.

Formula

Let \operatorname{sn}(u,k) represent the normal Jacobi sine function and \operatorname{dn}(u,k) be the normal Jacobi elliptic function and let \operatorname{F}(z,k) represent the normal elliptic integral of the first kind and \operatorname{E}(z,k) represent the normal elliptic integral of the second kind. Let a be the length of the ellipse's major axis, and e be the eccentricity of the ellipse. Let k be a fixed value between 0 and 1 called the modulus.

Given these variables,

\operatorname{x}(u) = -a(1-e)( \operatorname{F}(\operatorname{sn}(u,k),k) + \operatorname{F}(1,k)) - a(1+e)( \operatorname{E}( \operatorname{sn}(u,k),k) + \operatorname{E}(1,k)) \,
\operatorname{y}(u) = a(1+e)\operatorname{dn}(u,k) \,

The formula for the surface of revolution that is the unduloid is then

\operatorname{X}(u,v) = \langle \operatorname{x}(u), \operatorname{y}(u) \cos(v), \operatorname{y}(u) \sin(v)\rangle \,

Properties

One interesting property of the unduloid is that the mean curvature is constant. In fact, the mean curvature across the entire surface is always the reciprocal of twice the major axis length: 1/(2a).

Also, geodesics on an unduloid obey the Clairaut relation, and their behavior is therefore predictable.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • List of mathematics articles (U) — NOTOC U U duality U quadratic distribution U statistic UCT Mathematics Competition Ugly duckling theorem Ulam numbers Ulam spiral Ultraconnected space Ultrafilter Ultrafinitism Ultrahyperbolic wave equation Ultralimit Ultrametric space… …   Wikipedia

  • Umdrehungsflächen — entstehen durch Umdrehung einer Kurve um eine gerade Linie als Achse. Geometrisches darüber vgl. Fläche, Bd. 4, S. 56. Ist (a, b, c) ein Punkt der Achse, l, m, n die Richtungscosinus derselben, so ist (x – a)2 + (y – b)2 + (z – c)2 …   Lexikon der gesamten Technik

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”