Q-Pochhammer symbol

Q-Pochhammer symbol

In mathematics, in the area of combinatorics, a q-Pochhammer symbol, also called a q-shifted factorial, is a q-analog of the common Pochhammer symbol. It is defined as

:(a;q)_n = prod_{k=0}^{n-1} (1-aq^k)=(1-a)(1-aq)(1-aq^2)cdots(1-aq^{n-1}).

The q-Pochhammer symbol is a major building block in the construction of q-analogs; for instance, in the theory of basic hypergeometric series, it plays the role that the ordinary Pochhammer symbol plays in the theory of hypergeometric series.

Unlike the ordinary Pochhammer symbol, the q-Pochhammer symbol can be extended to an infinite product:

:(a;q)_infty = prod_{k=0}^{infty} (1-aq^k).

This is an analytic function of "q" in the interior of the unit disk, and can also be considered as a formal power series in "q". The special case

:phi(q) = (q;q)_infty=prod_{k=1}^infty (1-q^k)

is known as Euler's function, and is important in combinatorics, number theory, and the theory of modular forms.

A q-series is a series in which the coefficients are functions of "q", typically depending on "q" via q-Pochhammer symbols.

Identities

The finite product can be expressed in terms of the infinite product:

:(a;q)_n = frac{(a;q)_infty} {(aq^n;q)_infty},

which extends the definition to negative integers "n". Thus, for nonnegative "n", one has

:(a;q)_{-n} = frac{1}{(aq^{-n};q)_n}

and

:(a;q)_{-n} = frac{(-q/a)^n q^{n(n-1)/2 {(q/a;q)_n}.

The "q"-Pochhammer symbol is the subject of a number of q-series identities, particularly the infinite series expansions

:(x;q)_infty = sum_{n=0}^infty frac{(-1)^n q^{n(n-1)/2{(q;q)_n} x^n

and

:frac{1}{(x;q)_infty}=sum_{n=0}^infty frac{x^n}{(q;q)_n},

which are both special cases of the q-binomial theorem:

:frac{(ax;q)_infty}{(x;q)_infty} = sum_{n=0}^infty frac{(a;q)_n}{(q;q)_n} x^n.

Combinatorial interpretation

The "q"-Pochhammer symbol is closely related to the enumerative combinatorics of partitions. The coefficient of q^m a^n in:(a;q)_infty^{-1} = prod_{k=0}^{infty} (1-aq^k)^{-1}is the number of partitions of "m" into at most "n" parts.

Since, by conjugation of partitions, this is the same as the number of partitions of "m" into parts of size at most "n", by identification of generating series we obtain the identity:

:(a;q)_infty^{-1} = sum_{k=0}^infty left(prod_{j=1}^k frac{1}{1-q^j} ight) a^k = sum_{k=0}^infty frac{a^k}{(q;q)_k}as in the above section.

We also have that the coefficient of q^m a^n in:(-a;q)_infty = prod_{k=0}^{infty} (1+aq^k)is the number of partitions of "m" into "n" or "n"-1 distinct parts.

By removing a triangular partition with "n-1" parts from such a partition, we are left with an arbitrary partition with at most "n" parts. This gives a weight-preserving bijection between the set of partitions into "n" or "n"-1 distinct parts and the set of pairs consisting of a triangular partition having "n"-1 parts and a partition with at most "n" parts. By identifying generating series, this leads to the identity:

:(-a;q)_infty = prod_{k=0}^infty (1+aq^k) = sum_{k=0}^infty left(q^{kchoose 2} prod_{j=1}^k frac{1}{1-q^j} ight) a^k = sum_{k=0}^infty frac{q^{kchoose 2{(q;q)_k} a^kalso described in the above section.

The "q"-binomial theorem itself can also be handled by a slightly more involved combinatorial argument of a similar flavour.

Multiple arguments convention

Since identities involving "q"-Pochhammer symbols so frequently involve products of many symbols, the standard convention is to write a product as a single symbol of multiple arguments:

:(a_1,a_2,ldots,a_m;q)_n = (a_1;q)_n (a_2;q)_n ldots (a_m;q)_n.

Relationship to the "q"-bracket and the "q"-binomial

Noticing that

:lim_{q ightarrow 1}frac{1-q^n}{1-q}=n,

we define the "q"-analog of "n", also known as the "q"-bracket or "q"-number of "n" to be

: [n] _q=frac{1-q^n}{1-q}.

From this one can define the "q"-analog of the factorial, the "q"-factorial, as

:

Again, one recovers the usual factorial by taking the limit as "q" approaches 1.

From the "q"-factorials, one can move on to define the "q"-binomial coefficients, also known as Gaussian coefficients, Gaussian polynomials, or Gaussian binomials:

:egin{bmatrix}n\kend{bmatrix}_q=frac{ [n] _q!}{ [n-k] _q! [k] _q!}.

One can check that

:egin{bmatrix}n+1\kend{bmatrix}_q=egin{bmatrix}n\kend{bmatrix}_q+q^{n-k+1}egin{bmatrix}n\k-1end{bmatrix}_q.

One also obtains a q-analog of the Gamma function, called the q-Gamma function, and defined as

:Gamma_q(x)=frac{(1-q)^{1-x} (q;q)_infty}{(q^x;q)_infty}

Note that

:Gamma_q(x+1)= [x] _qGamma_q(x),frac{}{}

and

:Gamma_q(n+1)= [n] _q!frac{}{}.

This converges to the usual Gamma function as "q" approaches 1 from inside the unit disc.

ee also

* Basic hypergeometric series
* Q-derivative
* Q-theta function
* Elliptic gamma function
* Jacobi theta function

References

* George Gasper and Mizan Rahman, "Basic Hypergeometric Series, 2nd Edition", (2004), Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge. ISBN 0-521-83357-4.
* Roelof Koekoek and Rene F. Swarttouw, " [http://fa.its.tudelft.nl/~koekoek/askey/ The Askey scheme of orthogonal polynomials and its q-analogues] ", section 0.2.

External links

*
*
*
*


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Pochhammer symbol — In mathematics, the Pochhammer symbol introduced by Leo August Pochhammer is the notation (x)n, where n is a non negative integer. Depending on the context the Pochhammer symbol may represent either the rising factorial or the falling factorial… …   Wikipedia

  • Pochhammer-Symbol — Das Pochhammer Symbol ist eine spezielle Funktion, die in der Kombinatorik und in der Theorie der hypergeometrischen Funktionen verwendet wird. Der Name geht auf Leo August Pochhammer zurück. Notation Für das Symbol, das diese Funktion… …   Deutsch Wikipedia

  • Generalized Pochhammer symbol — In mathematics, the generalized Pochhammer symbol of parameter alpha>0 and partition kappa=(kappa 1,kappa 2,ldots,kappa m) generalizes the classical Pochhammer symbol and is defined as:(a)^{(alpha )} kappa=prod {i=1}^m prod {j=1}^{kappa i}left(a… …   Wikipedia

  • Pochhammer — ist der Name folgender Personen: Konrad Pochhammer (1873–1923), deutscher Mediziner und Hochschullehrer Leo August Pochhammer (1841–1920), deutscher Mathematiker Siehe auch: Pochhammer Symbol, spezielle Funktion, die in der Kombinatorik und in… …   Deutsch Wikipedia

  • Pochhammer k-symbol — In the mathematical theory of special functions, the Pochhammer k symbol and the k gamma function, introduced by Rafael Díaz and Eddy Pariguan [cite web date=2006 05 23 url=http://arxiv.org/abs/math/0405596v2 first=Rafael last=Díaz coauthors=Eddy …   Wikipedia

  • Mathematisches Symbol — Die Notation in der mathematischen Symbolschrift erfolgt in der Mathematik (z. B. in Formeln oder Gleichungen) unter der Verwendung von Symbolen. Beispielsweise wird die Addition von zwei Zahlen durch das Zeichen + dargestellt. Mehr über die… …   Deutsch Wikipedia

  • Leo August Pochhammer — (25 August 1841 ndash; 24 March 1920) was a Prussian mathematician, known for his work on special functions. He introduced the Pochhammer symbol, now generally used for expressing hypergeometric functions in a compact notation.ee also*Generalized …   Wikipedia

  • Symbole de Pochhammer — En mathématiques, le symbole de Pochhammer noté ou préférablement est utilisé en théorie des fonctions spéciales pour représenter la factorielle croissante : et est parfois utilisée en combinatoire pour représenter la factorielle… …   Wikipédia en Français

  • Símbolo q-Pochhammer — En matemáticas, en el área de combinatoria, el símbolo q Pochhmammer es el q análogo del más conocido símbolo de Pochhammer. Se define de la siguiente manera: El símbolo q Pochhmammer es el más importante ladrillo en la construcción de los q… …   Wikipedia Español

  • Leo August Pochhammer — (* 25. August 1841 in Stendal; † 24. März 1920 in Kiel) war ein deutscher Mathematiker und Namensgeber für das Pochhammer Symbol. Leben Pochhammer wuchs in Berlin auf und studierte von 1859 bis 1863 Mathematik und Physik an der Friedrich Wilhelms …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”